Validation Qualifiers checke by 14 in database 2/3/17

CETIFICATION

SDG No:

SUMMARY:

JC33384

Laboratory:

Accutest, New Jersey

Site:

BMS, Building 5 Area, PR

Matrix:

Groundwater

600859

Humacao, PR

Groundwater samples (Table 1) were collected on the BMSMC facility – Building 5 Area. The BMSMC facility is located in Humacao, PR. Samples were taken December 6-7, 2016 and were analyzed in Accutest Laboratory of Dayton, New Jersey for the parameters shown in Table 1. The results were reported under SDG No.: JC33384. Results were validated using the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. Individual data review worksheets are enclosed for each target analyte group. The data sample summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

SAMPLE ID	SAMPLE DESCRIPTION	MATRIX	ANALYSIS PERFORMED
JC33384-1	EB120616	AQ- Equipment Blank	1,3-Butadiene; SVOCs: PAHs + 1,4- Dioxane (SIM); Pesticides; LMWA
JC33384-2	UP-2	Groundwater	1,3-Butadiene; SVOCs: PAHs + 1,4- Dioxane (SIM); Pesticides; LMWA; Inorganics; Methane
JC33384-3	FB120616	AQ – Field Blank Water	1,3-Butadiene; SVOCs: PAHs + 1,4- Dioxane (SIM); Pesticides; LMWA
JC33384-4	EB120716	AQ – Equipment Blank	1,3-Butadiene; SVOCs: PAHs + 1,4- Dioxane (SIM); Pesticides; LMWA
JC33384-5	S-40D	Groundwater	SVOCs: PAHs + 1,4-Dioxane (SIM); Pesticides; LMWA
JC33384-6	S-41D	Groundwater	1,3-Butadiene; SVOCs: PAHs + 1,4- Dioxane (SIM); Pesticides; LMWA
JC33384-6D	S-41D MSD	Groundwater	1,3-Butadiene; SVOCs: PAHs + 1,4- Dioxane (SIM); Pesticides; LMWA
JC33384-6S	S-41D MS	Groundwater	1,3-Butadiene; SVOCs: PAHs + 1,4- Dioxane (SIM); Pesticides; LMWA
JC33384-7	S-40S	Groundwater	1,3-Butadiene; SVOCs: PAHs + 1,4- Dioxane (SIM); Pesticides; LMWA; Inorganics; Methane
JC33384-8	S-41S	Groundwater	1,3-Butadiene; SVOCs: PAHs + 1,4- Dioxane (SIM); Pesticides; LMWA; Inorganics; Methane
JC33384-9	FB120716	AQ – Field Blank Water	1,3-Butadiene; SVOCs: PAHs + 1,4- Dioxane (SIM); Pesticides; LMWA

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

Report of Analysis

Page 1 of 1

Client Sample ID: EB120616 Lab Sample ID:

JC33384-1

Matrix: Method:

AQ - Equipment Blank

SW846 8260C

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/06/16

Q

Date Received: 12/09/16

Percent Solids: n/a

File ID DF Analyzed By Prep Date **Prep Batch Analytical Batch** Run #1 4B67478.D 12/18/16 HT V4B2775 n/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

CAS No. Compound Result RL **MDL** Units 106-99-0 1,3-Butadiene ND 5.0 0.17 ug/l

CAS No. **Surrogate Recoveries** Run# 1 Run# 2 Limits Dibromofluoromethane 1868-53-7 76-120% 104% 1,2-Dichloroethane-D4 17060-07-0 110% 73-122% 2037-26-5 Toluene-D8 99% 84-119% 460-00-4 4-Bromofluorobenzene 111% 78-117%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Run #1 a

Run #2 b

Report of Analysis

Page 1 of 3

Client Sample ID: EB120616 Lab Sample ID: JC33384-1

File ID

6P33025.D

M130081.D

Matrix: AQ - Equipment Blank Method: SW846 8270D SW846 3510C Project:

Date Received: 12/09/16 Percent Solids: n/a

OP99254

Q

Date Sampled: 12/06/16

BMSMC, Building 5 Area, PR

DF

1

ŧ

Analyzed

12/15/16

12/17/16

Prep Date	Prep Batch	Analytical Batch
12/13/16	OP99167	E6P1523

EM5555

		50 37 Es Da	
	Initial Volume	Final Volume	
Run #1	950 ml	1.0 ml	
Run #2	950 ml	1.0 ml	

12/15/16

By

CS

IJ

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.3	0.86	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.3	0.94	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.1	1.3	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.3	2.6	ug/l
51-28-5	2,4-Dinitrophenol	ND	11	1.6	ug/l
534-52-1	4,6-Dinitro-o-cresol c	ND	5.3	1.4	ug/l
95-48-7	2-Methylphenol	ND	2.1	0.93	ug/l
	3&4-Methylphenol	ND	2.1	0.93	ug/l
88-75-5	2-Nitrophenol	ND	5.3	1.0	ug/l
100-02-7	4-Nitrophenol	ND	11	1.2	ug/l
87-86-5	Pentachlorophenol	ND	4.2	1.5	ug/l
108-95-2	Phenol	ND	2.1	0.41	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.3	1.5	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.3	1.4	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.3	0.97	ug/l
83-32-9	Acenaphthene	ND	1.1	0.20	ug/l
208-96-8	Acenaphthylene	ND	1.1	0.14	ug/l
98-86-2	Acetophenone	ND	2.1	0.22	ug/l
120-12-7	Anthracene	ND	1.1	0.22	ug/l
1912-24-9	Atrazine	ND	2.1	0.47	ug/l
100-52-7	Benzaldehyde	ND	5.3	0.30	ug/l
56-55-3	Benzo(a)anthracene	ND	1.1	0.21	ug/l
50-32-8	Benzo(a)pyrene	ND	1.1	0.22	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.22	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.36	ug/1
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.22	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.1	0.43	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.1	0.48	ug/l
92-52-4	1, 1'-Biphenyl	ND	1.1	0.22	ug/l
91-58-7	2-Chloronaphthalene	ND	2.1	0.25	ug/l
106-47-8	4-Chloroaniline	ND	5.3	0.36	ug/l
86-74-8	Carbazole	ND	1.1	0.24	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: EB120616 Lab Sample ID: JC33384-1

Matrix: AQ - Equipment Blank

Method: SW846 8270D SW846 3510C Project: BMSMC, Building 5 Area, PR

Date Sampled: 12/06/16 Date Received: 12/09/16

Percent Solids: n/a

ABN TCL Special List

	opotiur 2001					
CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.1	0.68	ug/i	
218-01-9	Chrysene	ND	1.1	0.19	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.1	0.29	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.1	0.26	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.1	0.42	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.1	0.39	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.58	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.50	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.1	0.53	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.35	ug/l	
132-64-9	Dibenzofuran	ND	5.3	0.23	ug/I	
84-74-2	Di-n-butyl phthalate	ND	2.1	0.52	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.1	0.25	ug/l	
84-66-2	Diethyl phthalate	ND	2.1	0.28	ug/l	
131-11-3	Dimethyl phthalate	ND	2.1	0.23	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	1.7	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.18	ug/l	
86-73-7	Fluorene	ND	1.1	0.18	ug/l	
118-74-1	Hexachlorobenzene	ND	1.1	0.34	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.1	0.52	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	2.9	ug/l	
67-72-1	Hexachloroethane	ND	2.1	0.41	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.35	ug/l	
78-59-1	Isophorone	ND	2.1	0.29	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.1	0.22	ug/l	
88-74-4	2-Nitroaniline	ND	5.3	0.29	ug/l	
99-09-2	3-Nitroaniline	ND	5.3	0.41	սջ/1	
100-01-6	4-Nitroaniline	ND	5.3	0.46	ug/l	
98-95-3	Nitrobenzene	ND	2.1	0.68	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.1	0.51	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.3	0.23	ug/l	1
85-01-8	Phenanthrene	ND	1.1	0.18	ug/l	133
129-00-0	Pyrene	ND	1.1	0.23	ug/l	1
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.1	0.39	ug/l	-
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	52%	55%	14-8	8%	
4165-62-2	Phenol-d5	35%	37%	10-1	10%	

ND = Not detected

118-79-6

MDL = Method Detection Limit

103%

100%

RL = Reporting Limit

E = Indicates value exceeds calibration range

2,4,6-Tribromophenol

J = Indicates an estimated value

39-149%

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: EB120616 Lab Sample ID:

JC33384-1

Matrix:

AQ - Equipment Blank

Method:

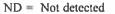
SW846 8270D SW846 3510C

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/06/16

Date Received: 12/09/16


Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	108%	85%	32-128%
321-60-8	2-Fluorobiphenyl	87%	82%	35-119%
1718-51-0	Terphenyl-d14	88%	83%	10-126%

- (a) There is compound in BS was outside in house QC limits. The results confirmed by reextraction outside the holding time.
- (b) Confirmation run.
- (c) This compound in BS is outside in house QC limits bias low.

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: EB120616 Lab Sample ID: JC33384-1

Matrix: AQ - Equipment Blank Method:

SW846 8270D BY SIM SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/06/16 Date Received: 12/09/16

Percent Solids: n/a

Q

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	3P57224.D	1	12/14/16	SG	12/13/16	OP99167A	E3P2653
Rim #2							

Project:

Initial Volume Final Volume Run #1 950 ml 1.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units
56-55-3	Benzo(a)anthracene	ND	0.053	0.024	ug/l
50-32-8	Benzo(a)pyrene	ND	0.053	0.035	ug/i
205-99-2	Benzo(b)fluoranthene	ND	0.11	0.046	ug/l
207-08-9	Benzo(k)fluoranthene	ND	0.11	0.035	ug/l
218-01-9	Chrysene	ND	0.11	0.027	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	0.11	0.038	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.11	0.040	ug/l
91-20-3	Naphthalene	ND	0.11	0.031	ug/l
123-91-1	1,4-Dioxane	ND	0.11	0.051	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
4165-60-0	Nitrobenzene-d5	73%		24-12	5%
321-60-8	2-Fluorobiphenyl	76%		19-12	7%
1718-51-0	Terphenyl-d14	82%		10-11	9%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Method:

Project:

Report of Analysis

Page 1 of 1

Client Sample ID: EB120616

Lab Sample ID: JC33384-1 Matrix:

AQ - Equipment Blank

SW846-8015C (DAI) BMSMC, Building 5 Area, PR

Date Sampled: 12/06/16 Date Received: 12/09/16

Q

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	GH107754.D	1	12/14/16	XPL	n/a	n/a	GGH5588
Run #2							

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units
64-17-5	Ethanol	ND	200	55	ug/l
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l
67-56-1	Methanol	ND	200	71	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its
111-27-3	Hexanol	121%		56-14	45%
111-27-3	Hexanol	120%		56-14	45%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: EB120616 Lab Sample ID:

JC33384-1

Date Sampled: 12/06/16

Matrix: Method: AQ - Equipment Blank SW846 8081B SW846 3510C Date Received: 12/09/16

Project:

BMSMC, Building 5 Area, PR

Percent Solids: n/a

Run #1

DF 1G130507.D 1

By Analyzed 12/14/16 KD Prep Date **Prep Batch** OP99172 12/13/16

Analytical Batch G1G4171

Run #2

Initial Volume 910 ml

File ID

Final Volume

10.0 ml

Run #1 Run #2

Pesticide TCL List

CAS No.	Compound	Result	KL	MDL	Units	Q
309-00-2	Aldrin	ND	0.011	0.0066	ug/l	

309-00-2	Aldrin	ND	0.011	0.0066	ug/l
319-84-6	alpha-BHC	ND	0.011	0.0066	ug/l
319-85-7	beta-BHC	ND	0.011	0.0063	ug/l
319-86-8	delta-BHC	ND	110.0	0.0050	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.011	0.0031	ug/l
5103-71-9	alpha-Chlordane	ND	0.011	0.0051	ug/l
5103-74-2	gamma-Chlordane	ND	0.011	0.0050	ug/l
60-57-1	Dieldrin	ND	0.011	0.0040	ug/l
72-54-8	4,4'-DDD	ND	0.011	0.0042	ug/l
72-55-9	4,4'-DDE	ND	0.011	0.0068	ug/l
50-29-3	4,4'-DDT	ND	0.011	0.0054	ug/l
72-20-8	Endrin	ND	0.011	0.0055	ug/l
1031-07-8	Endosulfan sulfate	ND	0.011	0.0058	ug/l
7421-93-4	Endrin aldehyde	ND	0.011	0.0056	ug/l
53494-70-5	Endrin ketone	ND	0.011	0.0056	ug/l
959-98-8	Endosulfan-I	ND	0.011	0.0055	ug/l
33213-65-9	Endosulfan-II	ND	0.011	0.0047	ug/l
76-44-8	Heptachlor	ND	0.011	0.0042	ug/l
1024-57-3	Heptachlor epoxide	ND	0.011	0.0072	ug/l
72-43-5	Methoxychlor	ND	0.022	0.0062	ug/l
8001-35-2	Toxaphene	ND	0.27	0.20	ug/l

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8	Tetrachloro-m-xylene	98%		26-132%
877-09-8	Tetrachloro-m-xylene	97%		26-132%
2051-24-3	Decachlorobiphenyl	65%		10-118%
2051-24-3	Decachlorobiphenyl	70%		10-118%

ND = Not detected RL = Reporting Limit MDL = Method Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page I of 1

Client Sample ID: UP-2

Lab Sample ID: JC33384-2

Matrix: Method: AQ - Ground Water

SW846 8260C

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/06/16

Date Received: 12/09/16

Percent Solids: n/a

File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
4B67468.D	1	12/18/16	HT	n/a	n/a	V4B2775

Run #1 Run #2

Purge Volume

Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units	0

106-99-0 1,3-Butadiene ND 5.0 0.17ug/l

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	104%		76-120%
17060-07-0	1,2-Dichloroethane-D4	110%		73-122%

2037-26-5 Toluene-D8 99% 84-119% 460-00-4 4-Bromofluorobenzene 108% 78-117%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 3

Client Sample ID: UP-2 Lab Sample ID: JC33384-2

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/06/16

Q

Date Received: 12/09/16

Percent Solids: n/a

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	6P33026.D	1	12/15/16	CS	12/13/16	OP99167	E6P1523
Run #2	3E89389.D	20	12/15/16	AN	12/13/16	OP99167	E3E3956

	Initial Volume	Final Volume	
Run #1	900 ml	1.0 ml	
Run #2	900 ml	1.0 ml	

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.6	0.91	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.6	0.99	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.2	1.4	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.6	2.7	ug/l
51-28-5	2,4-Dinitrophenol	ND	11	1.7	ug/l
534-52-1	4,6-Dinitro-o-cresol b	ND	5.6	1.4	ug/l
95-48-7	2-Methylphenol	ND	2.2	0.99	ug/l
	3&4-Methylphenol	ND	2.2	0.98	ug/l
88-75-5	2-Nitrophenol	ND	5.6	1.1	ug/l
100-02-7	4-Nitrophenol	ND	11	1.3	ug/l
87-86-5	Pentachlorophenol	ND	4.4	1.5	ug/l
108-95-2	Phenol	ND	2.2	0.44	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.6	1.6	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.6	1.5	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.6	1.0	ug/l
83-32-9	Acenaphthene	ND	1.1	0.21	ug/l
208-96-8	Acenaphthylene	ND	1.1	0.15	ug/l
98-86-2	Acetophenone	ND	2.2	0.23	ug/l
120-12-7	Anthracene	ND	1.1	0.23	ug/l
1912-24-9	Atrazine	ND	2.2	0.50	ug/l
100-52-7	Benzaldehyde	ND	5.6	0.32	ug/l
56-55-3	Benzo(a)anthracene	ND	1.1	0.23	ug/l
50-32-8	Benzo(a)pyrene	ND	1.1	0.24	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.23	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.38	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.23	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.2	0.45	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.2	0.51	ug/l
92-52-4	1,1'-Biphenyl	ND	1.1	0.24	ug/l
91-58-7	2-Chloronaphthalene	ND	2.2	0.26	ug/l
106-47-8	4-Chloroaniline	ND	5.6	0.38	ug/l
86-74-8	Carbazole	ND	1.1	0.25	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

2.2

Report of Analysis

Client Sample ID: UP-2 Lab Sample ID: JC33384-2

Matrix: AQ - Ground Water

Method: SW846 8270D SW846 3510C Project: BMSMC, Building 5 Area, PR

Date Sampled: 12/06/16 **Date Received:** 12/09/16

Percent Solids: n/a

Q

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
105-60-2	Caprolactam	ND	2.2	0.72	սջ/1
218-01-9	Chrysene	ND	1.1	0.20	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	2.2	0.31	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	2.2	0.28	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.2	0.45	ug/l
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.2	0.41	ug/l
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.61	ug/l
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.53	ug/l
91-94-1	3,3'-Dichlorobenzidine	ND	2.2	0.56	ug/l
123-91-1	1,4-Dioxane	324 c	22	15	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.37	ug/l
132-64-9	Dibenzofuran	ND	5.6	0.24	ug/l
84-74-2	Di-n-butyl phthalate	ND	2.2	0.55	ug/l
117-84-0	Di-n-octyl phthalate	ND	2.2	0.26	ug/l
84-66-2	Diethyl phthalate	ND	2.2	0.29	ug/l
131-11-3	Dimethyl phthalate	ND	2.2	0.24	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.2	1.8	ug/l
206-44-0	Fluoranthene	ND	1.1	0.19	ug/l
86-73-7	Fluorene	ND	1.1	0.19	ug/l
118-74-1	Hexachlorobenzene	ND	1.1	0.36	ug/l
87-68-3	Hexachlorobutadiene	ND	1.1	0.55	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	11	3.1	ug/l
67-72-1	Hexachloroethane	ND	2.2	0.43	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.37	ug/l
78-59-1	Isophorone	ND	2.2	0.31	ug/l
90-12-0	1-Methylnaphthalene	ND	1.1	0.29	ug/l
91-57-6	2-Methylnaphthalene	ND	1.1	0.23	ug/l
88-74-4	2-Nitroaniline	ND	5.6	0.31	ug/l
99-09-2	3-Nitroaniline	ND	5.6	0.43	ug/l
100-01-6	4-Nitroaniline	ND	5.6	0.49	ug/l
98-95-3	Nitrobenzene	ND	2.2	0.71	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	2.2	0.53	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	5.6	0.25	ug/l
85-01-8	Phenanthrene	ND	1.1	0.19	ug/l
129-00-0	Pyrene	ND	1.1	0.24	ug/l
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.2	0.41	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	:s

\

367-12-4

58%

36%

2-Fluorophenol

14-88%

fael Infa Méndez

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

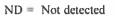
 Lab Sample ID:
 JC33384-2
 Date Sampled:
 12/06/16

 Matrix:
 AQ - Ground Water
 Date Received:
 12/09/16

 Method:
 SW846 8270D
 SW846 3510C
 Percent Solids:
 n/a

Project: BMSMC, Building 5 Area, PR

ABN TCL Special List


CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
4165-62-2	Phenol-d5	42%	26%	10-110%	
118-79-6	2,4,6-Tribromophenol	110%	82%	39-149%	
4165-60-0	Nitrobenzene-d5	105%	60%	32-128%	
321-60-8	2-Fluorobiphenyl	86%	69%	35-119%	
1718-51-0	Terphenyl-d14	64%	56%	10-126%	

(a) There are compounds in BS were outside in house QC limits. There's no sample left to re-extract.

(b) This compound outside control limits biased low in the associated BS. There's no sample left to re-extract.

(c) Result is from Run# 2

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

By

SG

Prep Date

12/13/16

Page 1 of 1

Client Sample ID: UP-2

Lab Sample ID: JC33384-2 Matrix:

File ID

3P57225.D

Method: Project:

AQ - Ground Water

SW846 8270D BY SIM SW846 3510C BMSMC, Building 5 Area, PR

Analyzed

12/14/16

Date Sampled: 12/06/16 Date Received: 12/09/16

Percent Solids: n/a

OP99167A

Q

Prep Batch **Analytical Batch**

E3P2653

Run #1 Run #2

> Initial Volume Final Volume

Run #1 900 ml 1.0 ml

DF

1

Run #2

MDL CAS No. Compound Result RL Units 56-55-3 Benzo(a)anthracene ND 0.056 0.025 ug/l 50-32-8 Benzo(a)pyrene ND 0.056 0.037 ug/l 205-99-2 Benzo(b)fluoranthene 0.048 ND 0.11 ug/l 207-08-9 Benzo(k)fluoranthene ND 0.11 0.037 ug/l 218-01-9 Chrysene ND 0.11 0.029 ug/l Dibenzo(a,h)anthracene 53-70-3 ND 0.11 0.040 ug/l 193-39-5 Indeno(1,2,3-cd)pyrene ND 0.11 0.042 ug/l 91-20-3 0.033 Naphthalene ND 0.11 ug/l CAS No. **Surrogate Recoveries** Run#1 Run# 2 Limits 4165-60-0 Nitrobenzene-d5 74% 24-125% 2-Fluorobiphenyl 77% 19-127% 321-60-8 1718-51-0 Terphenyl-d14 67% 10-119%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: UP-2

Lab Sample ID: JC33384-2

Matrix:

AQ - Ground Water

Method: Project:

SW846-8015C (DAI)

BMSMC, Building 5 Area, PR

Date Sampled: 12/06/16

Date Received: 12/09/16

Q

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	GH107755.D	1	12/14/16	XPL	n/a	n/a	GGH5588
Run #2							

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units
64-17-5	Ethanol	ND	200	55	ug/l
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l
71-23-8	n-Propyl Alcohol	ND	100	43	ug/i
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/i
67-56-1	Methanol	ND	200	71	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
111-27-3	Hexanol	125%		56-1	45%
111-27-3	Hexanol	120%		56-1	45%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: UP-2

Lab Sample ID: JC33384-2

Matrix:

AQ - Ground Water

Method:

RSK-175

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/06/16

Date Received: 12/09/16

Percent Solids: n/a

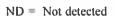
	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	AA56403.D	20	12/16/16	LM	n/a	n/a	GAA1095

Run #2

CAS No. Compound Result RL **MDL** Units Q

74-82-8

Methane


1710

2.2

0.71

ug/l

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: UP-2

Lab Sample ID: JC33384-2

Matrix:

AQ - Ground Water

Method: Project:

SW846 8081B SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/06/16 Date Received: 12/09/16

Q

Percent Solids: n/a

Analytical Batch File ID DF Analyzed By **Prep Date** Prep Batch OP99172 G1G4171 Run #1 1G130508.D 1 12/14/16 KD 12/13/16

Run #2

Final Volume Initial Volume

Run #1 970 ml 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin	ND	0.010	0.0062	ug/l
319-84-6	alpha-BHC	ND	0.010	0.0062	ug/l
319-85-7	beta-BHC	ND	0.010	0.0059	ug/l
319-86-8	delta-BHC	ND	0.010	0.0047	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0029	ug/l
5103-71-9	alpha-Chlordane	ND	0.010	0.0048	ug/l
5103-74-2	gamma-Chlordane	ND	0.010	0.0047	ug/l
60-57-1	Dieldrin	ND	0.010	0.0037	ug/l
72-54-8	4,4'-DDD	ND	0.010	0.0039	ug/l
72-55-9	4,4'-DDE	ND	0.010	0.0064	ug/l
50-29-3	4,4'-DDT	ND	0.010	0.0051	ug/l
72-20-8	Endrin	ND	0.010	0.0052	ug/l
1031-07-8	Endosulfan sulfate	ND	0.010	0.0054	ug/l
7421-93-4	Endrin aldehyde	ND	0.010	0.0053	ug/l
53494-70-5	Endrin ketone	ND	0.010	0.0052	ug/l
959-98-8	Endosulfan-I	ND	0.010	0.0051	ug/l
33213-65-9	Endosulfan-II	ND	0.010	0.0044	ug/l
76-44-8	Heptachlor	ND	0.010	0.0039	ug/l
1024-57-3	Heptachlor epoxide	ND	0.010	0.0067	ug/l
72-43-5	Methoxychlor	ND	0.021	0.0059	ug/l
8001-35-2	Toxaphene	ND	0.26	0.19	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	s
877-09-8	Tetrachloro-m-xylene	78%		26-13	2%
877-09-8	Tetrachloro-m-xylene	76%		26-13	2%
2051-24-3	Decachlorobiphenyl	49%		10-11	8%
2051-24-3	Decachlorobiphenyl	53%		10-11	8%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: UP-2

Lab Sample ID: JC33384-2

Matrix:

AQ - Ground Water

Date Sampled: 12/06/16

Date Received: 12/09/16

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron Manganese	10200 822	100 15	12 0.39	ug/l ug/l				SW846 6010C ¹ SW846 6010C ¹	SW846 3010A ² SW846 3010A ²

Instrument QC Batch: MA40977
 Prep QC Batch: MP97634

Client Sample ID: UP-2

Lab Sample ID: JC33384-2

Matrix:

AQ - Ground Water

Date Sampled: 12/06/16

Date Received: 12/09/16

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as CaCO3	235	5.0	mg/l	1	12/15/16 23:25	СВ	SM2320 B-11
Iron, Ferric a	10.1	0.30	mg/l	1	12/16/16 19:53	ND	SM3500FE B-11
Iron, Ferrous ^b	< 0.20	0.20	mg/l	1	12/10/16 13:35	YR	SM3500FE B-11
Nitrogen, Nitrate c	< 0.11	0.11	mg/l	1	12/21/16 13:37	YZ	EPA353.2/SM4500NO2B
Nitrogen, Nitrate + Nitrite	< 0.10	0.10	mg/l	1	12/21/16 13:37	YZ	EPA 353 2/LACHAT
Nitrogen, Nitrite d	< 0.010	0.010	mg/l	1	12/09/16 22:48	CB	SM4500NO2 B-11
Sulfate	< 10	10	mg/l	1	12/19/16 23:32	JN	EPA 300/SW846 9056A
Sulfide	< 2.0	2.0	mg/l	1	12/13/16 14:53	JA	SM4500S2- F-11

Report of Analysis

(a) Calculated as: (Iron) - (Iron, Ferrous)

(b) Field analysis required. Received out of hold time and analyzed by request.

(c) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite) Nitrogen, Nitrite analysis done past holding time.

(d) Sample received outside the holding time.

Page 1 of 1

Client Sample ID: FB120616 Lab Sample ID: JC33384-3

Matrix: AQ - Field Blank Water

SW846 8260C Method:

BMSMC, Building 5 Area, PR Project:

Date Sampled: 12/06/16 Date Received: 12/09/16

Percent Solids: n/a

Analytical Batch File ID DF Analyzed By Prep Date Prep Batch HT V4B2775 Run #1 4B67477.D 12/18/16 n/a n/a 1

Run #2

Purge Volume

5.0 ml

Run #1 Run #2

MDL CAS No. Compound Result RL Units Q

106-99-0 1,3-Butadiene ND 5.0 0.17 ug/l

CAS No. **Surrogate Recoveries** Run#1 Run# 2 Limits 1868-53-7 Dibromofluoromethane 104% 76-120%

17060-07-0 1,2-Dichloroethane-D4 111% 73-122% 2037-26-5 Toluene-D8 99% 84-119%

460-00-4 4-Bromofluorobenzene 110% 78-117%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Client Sample ID: FB120616 Lab Sample ID: JC33384-3

Matrix: AQ - Field Blank Water SW846 8270D SW846 3510C Method:

Date Received: 12/09/16

Q

BMSMC, Building 5 Area, PR Project:

Percent Solids: n/a

Date Sampled: 12/06/16

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
	6P33027.D	1	12/15/16	CS	12/13/16	OP99167	E6P1523
Run #2 b	M130082.D	1	12/17/16	JJ	12/15/16	OP99254	EM5555

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.1	0.83	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.1	0.90	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.1	2.5	ug/l
51-28-5	2,4-Dinitrophenol	ND	10	1.6	ug/l
534-52-1	4,6-Dinitro-o-cresol c	ND	5.1	1.3	ug/l
95-48-7	2-Methylphenol	ND	2.0	0.90	ug/l
	3&4-Methylphenol	ND	2.0	0.89	ug/l
88-75-5	2-Nitrophenol	ND	5.1	0.97	ug/l
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l
87-86-5	Pentachlorophenol	ND	4.0	1.4	ug/l
108-95-2	Phenol	ND	2.0	0.40	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.1	1.5	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.1	1.3	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.1	0.93	ug/l
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l
98-86-2	Acetophenone	ND	2.0	0.21	ug/l
120-12-7	Anthracene	ND	1.0	0.21	ug/l
1912-24-9	Atrazine	ND	2.0	0.45	ug/l
100-52-7	Benzaldehyde	ND	5.1	0.29	ug/l
56-55-3	Benzo(a)anthracene	ND	1.0	0.21	ug/l
50-32-8	Benzo(a)pyrene	ND	1.0	0.22	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.41	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.0	0.46	ug/l
92-52-4	1, 1'-Biphenyl	ND	1.0	0.21	ug/l
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l
106-47-8	4-Chloroaniline	ND	5.1	0.34	ug/i
86-74-8	Carbazole	ND	1.0	0.23	ug/i

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: FB120616 Lab Sample ID: JC33384-3

Matrix: AQ - Field Blank Water
Method: SW846 8270D SW846 3510C

Project: BMSMC, Building 5 Area, PR

Date Sampled: 12/06/16 **Date Received:** 12/09/16

Percent Solids: n/a

4

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.0	0.66	ug/l	
218-01-9	Chrysene	ND	1.0	0.18	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.41	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.56	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.48	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.51	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.33	ug/l	
132-64-9	Dibenzofuran	ND	5.1	0.22	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.50	นg/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.24	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.26	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	սջ/1	
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l	
86-73-7	Fluorene	ND	1.0	0.17	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.50	սջ/1	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l	
67-72-1	Hexachloroethane	ND	2.0	0.39	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.34	ug/l	
78-59-1	Isophorone	ND	2.0	0.28	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/l	
88-74-4	2-Nitroaniline	ND	5.1	0.28	ug/l	
99-09-2	3-Nitroaniline	ND	5.1	0.39	ug/l	
100-01-6	4-Nitroaniline	ND	5.1	0.44	ug/l	
98-95-3	Nitrobenzene	ND	2.0	0.65	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.49	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.1	0.22	ug/l	
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l	
129-00-0	Pyrene	ND	1.0	0.22	սք/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.37	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	46%	55%	14-8	8%	
4165-62-2	Phenol-d5	30%	36%	10-1	10%	
118-79-6	2,4,6-Tribromophenol	94%	94%	39-1	49%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: FB120616 Lab Sample ID: JC33384-3

Matrix: Method:

Project:

AQ - Field Blank Water

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 12/06/16 Date Received: 12/09/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	97%	85%	32-128%
321-60-8	2-Fluorobiphenyl	83%	82%	35-119%
1718-51-0	Terphenyl-d14	88%	99%	10-126%

- (a) There is compound in BS was outside in house QC limits. The results confirmed by reextraction outside the holding time.
- (b) Confirmation run.
- (c) This compound in BS is outside in house QC limits bias low.

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: FB120616

Lab Sample ID: Matrix:

JC33384-3 AQ - Field Blank Water

Method:

Project:

SW846 8270D BY SIM SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/06/16 Date Received: 12/09/16

Percent Solids: n/a

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 Run #2	3P57226.D	1	12/14/16	SG	12/13/16	OP99167A	E3P2653

RL

MDL

Units

Q

	Initial Volume	Final Volume
Run #1	990 ml	1.0 ml

Run #2 CAS No. Compound

	•				
56-55-3	Benzo(a)anthracene	ND	0.051	0.023	ug/l
50-32-8	Benzo(a)pyrene	ND	0.051	0.034	ug/l
205-99-2	Benzo(b)fluoranthene	ND	0.10	0.044	ug/l
207-08-9	Benzo(k)fluoranthene	ND	0.10	0.033	ug/l
218-01-9	Chrysene	ND	0.10	0.026	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	0.10	0.037	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.10	0.038	ug/l
91-20-3	Naphthalene	ND	0.10	0.030	ug/l
123-91-1	1,4-Dioxane	ND	0.10	0.049	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its

Result

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	71%		24-125%
321-60-8	2-Fluorobiphenyl	80%		19-127%
1718-51-0	Terphenyl-d14	89%		10-119%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Ву

XPL

n/a

56-145%

Analyzed

12/14/16

Page I of I

Client Sample ID: FB120616

Lab Sample ID: JC33384-3

File ID

GH107756.D

Matrix: Method:

Project:

AQ - Field Blank Water

SW846-8015C (DAI)

DF

1

BMSMC, Building 5 Area, PR

Date Sampled: 12/06/16 Date Received: 12/09/16

Percent Solids: n/a

n/a

Q

Prep Date **Prep Batch Analytical Batch**

GGH5588

Run #1 Run #2

111-27-3

Low Molecular Alcohol List

Hexanol

CAS No.	Compound	Result	RL	MDL	Units
64-17-5	Ethanol	ND	200	55	ug/l
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l
71-36-3	n-Butyl Alcohol	ND	100	87	սք/1
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l
67-56-1	Methanol	ND	200	71	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
111-27-3	Hexanol	118%		56-1	45%

117%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: FB120616

Lab Sample ID: JC33384-3

Matrix: Method: AQ - Field Blank Water SW846 8081B SW846 3510C

Project: BMSMC, Building 5 Area, PR Date Sampled: 12/06/16 Date Received: 12/09/16

Percent Solids: n/a

File ID **Prep Date** Prep Batch **Analytical Batch** DF Analyzed By Run #1 1G130509.D 12/14/16 KD 12/13/16 OP99172 G1G4171 1

Run #2

Final Volume Initial Volume

1000 ml Run #1

10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.010	0.0060	ug/l	
319-84-6	alpha-BHC	ND	0.010	0.0060	ug/l	
319-85-7	beta-BHC	ND	0.010	0.0057	ug/l	
319-86-8	delta-BHC	ND	0.010	0.0046	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0028	ug/l	
5103-71-9	alpha-Chlordane	ND	0.010	0.0046	ug/l	
5103-74-2	gamma-Chlordane	ND	0.010	0.0046	ug/l	
60-57-1	Dieldrin	ND	0.010	0.0036	ug/l	
72-54-8	4,4'-DDD	ND	0.010	0.0038	ug/l	
72-55-9	4,4'-DDE	ND	0.010	0.0062	ug/l	
50-29-3	4,4'-DDT	ND	0.010	0.0050	ug/l	
72-20-8	Endrin	ND	0.010	0.0050	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.010	0.0053	ug/l	
7421-93-4	Endrin aldehyde	ND	0.010	0.0051	ug/l	
53494-70-5	Endrin ketone	ND	0.010	0.0051	ug/l	
959-98-8	Endosulfan-I	ND	0.010	0.0050	ug/l	
33213-65-9	Endosulfan-II	ND	0.010	0.0043	ug/l	
76-44-8	Heptachlor	ND	0.010	0.0038	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.010	0.0065	ug/l	
72-43-5	Methoxychlor	ND	0.020	0.0057	ug/l	
8001-35-2	Toxaphene	ND	0.25	0.18	ug/l	-8
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	33.0
877-09-8	Tetrachloro-m-xylene	86%		26-1.	32%	
877-09-8	Tetrachloro-m-xylene	85%		26-13	32%	- (
2051-24-3	Decachlorobiphenyl	54%		10-1	18%	_ \
2051-24-3	Decachlorobiphenyl	61%		10-1	18%	,

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: EB120716

Lab Sample ID: JC33384-4 Matrix:

Method:

AQ - Equipment Blank

Project:

SW846 8260C

BMSMC, Building 5 Area, PR

Date Sampled: 12/07/16 Date Received: 12/09/16

Q

Percent Solids: n/a

File ID DF Analyzed By **Prep Date Prep Batch Analytical Batch** Run #1 4B67476.D 1 12/18/16 HT n/a n/a V4B2775 Run #2

Purge Volume

Run #1 5.0 ml

Run #2

CAS No. Compound Result RL**MDL** Units 106-99-0 ND 5.0 0.17 1,3-Butadiene ug/l CAS No. **Surrogate Recoveries** Run#1 Run# 2 Limits 102% 76-120% 1868-53-7 Dibromofluoromethane 17060-07-0 1,2-Dichloroethane-D4 110% 73-122% Toluene-D8 84-119% 2037-26-5 100% 460-00-4 4-Bromofluorobenzene 110% 78-117%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 3

Client Sample ID: EB120716 Lab Sample ID: JC33384-4

Matrix: AQ - Equipment Blank Method:

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR Date Sampled: 12/07/16 Date Received: 12/09/16

Percent Solids: n/a

File ID DF By Prep Date Prep Batch **Analytical Batch** Analyzed Run #1 M130028.D 1 12/15/16 KM 12/14/16 OP99210 EM5553

Run #2

Project:

Final Volume Initial Volume

Run #1 960 ml 1.0 ml

Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.2	0.85	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.2	0.93	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.1	1.3	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.2	2.5	ug/l	
51-28-5	2,4-Dinitrophenol	ND	10	1.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	5.2	1.4	ug/l	
95-48-7	2-Methylphenol	ND	2.1	0.93	ug/l	
	3&4-Methylphenol	ND	2.1	0.92	ug/l	
88-75-5	2-Nitrophenol	ND	5.2	1.0	ug/l	
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l	
87-86-5	Pentachlorophenol	ND	4.2	1.4	ug/l	
108-95-2	Phenol	ND	2.1	0.41	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.2	1.5	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.2	1.4	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.2	0.96	ug/l	
83-32-9	Acenaphthene	ND	1.0	0.20	ug/l	
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l	
98-86-2	Acetophenone	ND	2.1	0.22	ug/l	
120-12-7	Anthracene	ND	1.0	0.22	ug/l	
1912-24-9	Atrazine	ND	2.1	0.47	ug/l	
100-52-7	Benzaldehyde	ND	5.2	0.30	սք/1	
56-5 5- 3	Benzo(a)anthracene	ND	1.0	0.21	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.0	0.22	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.36	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.1	0.42	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.1	0.48	ug/l	
92-52-4	1, 1'-Biphenyl	ND	1.0	0.22	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.1	0.25	ug/l	
106-47-8	4-Chloroaniline	ND	5.2	0.35	ug/l	
04 - 1 - 0	0 1 1	N 1775	1.0	0.01		

ND = Not detected

86-74-8

MDL = Method Detection Limit

ND

1.0

0.24

RL = Reporting Limit

E = Indicates value exceeds calibration range

Carbazole

J = Indicates an estimated value

ug/l

B = Indicates analyte found in associated method blank

Client Sample ID: EB120716 Lab Sample ID: JC33384-4

Matrix: AQ - Equipment Blank
Method: SW846 8270D SW846 3510C
Project: BMSMC, Building 5 Area, PR

Date Received: 12/09/16
Percent Solids: n/a

Q

Date Sampled: 12/07/16

Ä

ABN TCL Special List

	•				
CAS No.	Compound	Result	RL	MDL	Units
105-60-2	Caprolactam	ND	2.1	0.68	ug/l
218-01-9	Chrysene	ND	1.0	0.18	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	2.1	0.29	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	2.1	0.26	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.1	0.42	ug/l
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.1	0.38	ug/l
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.58	ug/l
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.50	ug/l
91-94-1	3,3'-Dichlorobenzidine	ND	2.1	0.53	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.34	ug/l
132-64-9	Dibenzofuran	ND	5.2	0.23	ug/l
84-74-2	Di-n-butyl phthalate	ND	2.1	0.52	ug/l
117-84-0	Di-n-octyl phthalate	ND	2.1	0.24	ug/l
84-66-2	Diethyl phthalate	ND	2.1	0.27	ug/l
131-11-3	Dimethyl phthalate	ND	2.1	0.23	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	1.7	ug/l
206-44-0	Fluoranthene	ND	1.0	0.18	ug/l
86-73-7	Fluorene	ND	1.0	0.18	ug/l
118-74-1	Hexachlorobenzene	ND	1.0	0.34	ug/l
87-68-3	Hexachlorobutadiene	ND	1.0	0.51	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	10	2.9	ug/l
67-72-1	Hexachloroethane	ND	2.1	0.41	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.35	ug/l
78-59-1	Isophorone	ND	2.1	0.29	ug/l
90-12-0	1-Methylnaphthalene	ND	1.0	0.27	ug/l
91-57-6	2-Methylnaphthalene	ND	1.0	0.22	ug/l
88-74-4	2-Nitroaniline	ND	5.2	0.29	ug/l
99-09-2	3-Nitroaniline	ND	5.2	0.40	ug/l
100-01-6	4-Nitroaniline	ND	5.2	0.46	ug/l
98-95-3	Nitrobenzene	ND	2.1	0.67	ug/i
621-64-7	N-Nitroso-di-n-propylamine	ND	2.1	0.50	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	5.2	0.23	ug/l
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l
129-00-0	Pyrene	ND	1.0	0.23	ug/l
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.1	0.39	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
367-12-4	2-Fluorophenol	43%		14-8	8%
4175 (2.2	bt1 Je	200/		10.1	1/00/

ND = Not detected

4165-62-2

MDL = Method Detection Limit

29%

RL = Reporting Limit

E = Indicates value exceeds calibration range

Phenol-d5

J = Indicates an estimated value

10-110%

B = Indicates analyte found in associated method blank

Client Sample ID: EB120716 Lab Sample ID: JC33384-4

Matrix:

AQ - Equipment Blank

Method: Project:

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/07/16 Date Received: 12/09/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
118-79-6	2,4,6-Tribromophenol	96%		39-149%
4165-60-0	Nitrobenzene-d5	84%		32-128%
321-60-8	2-Fluorobiphenyl	81%		35-119%
1718-51-0	Terphenyl-d14	96%		10-126%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: EB120716

Lab Sample ID:

JC33384-4

AQ - Equipment Blank

Matrix:

SW846 8270D BY SIM SW846 3510C

Method: Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/07/16

Q

Date Received: 12/09/16

Percent Solids: n/a

Prep Batch **Analytical Batch** File ID DF By Prep Date Analyzed OP99210A E3P2659 12/14/16 12/18/16 SG Run #1 3P57331.D 1

Run #2

Final Volume Initial Volume 960 ml

Run #1

1.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units
56-55-3	Benzo(a)anthracene	ND	0.052	0.024	ug/l
50-32-8	Benzo(a)pyrene	ND	0.052	0.035	ug/l
205-99-2	Benzo(b)fluoranthene	ND	0.10	0.045	ug/l
207-08-9	Benzo(k)fluoranthene	ND	0.10	0.034	ug/l
218-01-9	Chrysene	ND	0.10	0.027	ug/l
53-70-3	Dibenzo(a, h)anthracene	ND	0.10	0.038	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.10	0.040	ug/l
91-20-3	Naphthalene	ND	0.10	0.031	ug/l
123-91-1	1,4-Dioxane	ND	0.10	0.051	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
4165-60-0	Nitrobenzene-d5	64%		24-1	25%
321-60-8	2-Fluorobiphenyl	55%		19-1	27%
1718-51-0	Terphenyl-d14	70%		10-1	19%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: EB120716 Lab Sample ID: JC33384-4

Matrix: AQ - Equipment Blank Method: SW846-8015C (DAI)

Project: BMSMC, Building 5 Area, PR Date Sampled: 12/07/16 Date Received: 12/09/16


Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	GH107757.D	1	12/14/16	XPL	n/a	n/a	GGH5588
Run #2							

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units
64-17-5	Ethanol	ND	200	55	ug/l
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l
67-56-1	Methanol	ND	200	71	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
111-27-3	Hexanol	119%		56-1	45%
111-27-3	Hexanol	121%		56-1	45%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: EB120716

Lab Sample ID: JC33384-4

Matrix: AQ - Equipment Blank Method: SW846 8081B SW846 3510C Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/07/16 Date Received: 12/09/16

Percent Solids: n/a

Q

File ID By **Prep Date Prep Batch Analytical Batch** DF Analyzed CP OP99184 G8G42 8G1178.D 12/15/16 12/13/16 Run #1 1

Run #2

Final Volume **Initial Volume**

10.0 ml Run #1 980 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin	ND	0.010	0.0062	ug/l
319-84-6	alpha-BHC	ND	0.010	0.0061	ug/l
319-85-7	beta-BHC	ND	0.010	0.0058	ug/l
319-86-8	delta-BHC	ND	0.010	0.0047	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0028	ug/l
5103-71-9	alpha-Chlordane	ND	0.010	0.0047	ug/l
5103-74-2	gamma-Chlordane	ND	0.010	0.0047	ug/l
60-57-1	Dieldrin	ND	0.010	0.0037	ug/l
72-54-8	4,4'-DDD	ND	0.010	0.0039	ug/l
72-55-9	4,4'-DDE	ND	0.010	0.0063	ug/l
50-29-3	4,4'-DDT	ND	0.010	0.0051	ug/l
72-20-8	Endrin	ND	0.010	0.0051	ug/l
1031-07-8	Endosulfan sulfate	ND	0.010	0.0054	ug/l
7421-93-4	Endrin aldehyde	ND	0.010	0.0052	ug/i
53494-70-5	Endrin ketone	ND	0.010	0.0052	ug/l
959-98-8	Endosulfan-l	ND	0.010	0.0051	ug/l
33213-65-9	Endosulfan-II	ND	0.010	0.0044	ug/l
76-44-8	Heptachlor	ND	0.010	0.0039	ug/l
1024-57-3	Heptachlor epoxide	ND	0.010	0.0067	ug/l
72-43-5	Methoxychlor	ND	0.020	0.0058	ug/l
8001-35-2	Toxaphene	ND	0.26	0.19	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its
877-09-8	Tetrachioro-m-xylene	93%		26-13	32%
877-09-8	Tetrachloro-m-xylene	95%		26-13	
2051-24-3	Decachlorobiphenyl	88%		10-1	
2051-24-3	Decachlorobiphenyl	88%		10-1	18%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Ву

KM

Prep Date

12/14/16

Analyzed

12/15/16

Page 1 of 3

Client Sample ID: S-40D

Lab Sample ID: JC33384-5

File ID

M130034.D

Matrix: Method: AQ - Ground Water

SW846 8270D SW846 3510C

Date Sampled: 12/07/16 Date Received: 12/09/16

OP99210

Q

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Prep Batch

Analytical Batch

EM5553

Run #1 Run #2

> Final Volume Initial Volume

Run #1 1000 ml 1.0 ml

DF

1

Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.0	0.82	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.0	0.89	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.0	2.4	ug/i
51-28-5	2.4-Dinitrophenol	ND	10	1.6	ug/i
534-52-1	4,6-Dinitro-o-cresol	ND	5.0	1.3	ug/l
95-48-7	2-Methylphenol	ND	2.0	0.89	ug/l
	3&4-Methylphenol	ND	2.0	0.88	ug/l
88-75-5	2-Nitrophenol	ND	5.0	0.96	ug/l
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l
87-86-5	Pentachlorophenol	ND	4.0	1.4	ug/l
108-95-2	Phenol	ND	2.0	0.39	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.0	1.5	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.3	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.0	0.92	ug/l
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l
98-86-2	Acetophenone	ND	2.0	0.21	ug/l
120-12-7	Anthracene	ND	1.0	0.21	ug/l
1912-24-9	Atrazine	ND	2.0	0.45	ug/l
100-52-7	Benzaldehyde	ND	5.0	0.29	ug/l
56-55-3	Benzo(a)anthracene	ND	1.0	0.20	ug/l
50-32-8	Benzo(a)pyrene	ND	1.0	0.21	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.40	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.0	0.46	ug/l
92-52-4	1,1'-Biphenyl	ND	1.0	0.21	ug/l
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l
106-47-8	4-Chloroaniline	ND	5.0	0.34	ug/l
86-74-8	Carbazole	ND	1.0	0.23	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: S-40D

Lab Sample ID: JC33384-5

Matrix: AQ - Ground Water
Method: SW846 8270D SW846 3510C

Project: BMSMC, Building 5 Area, PR

Date Sampled: 12/07/16

Date Received: 12/09/16

Percent Solids: n/a

Q

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
105-60-2	Caprolactam	ND	2.0	0.65	ug/l
218-01-9	Chrysene	ND	1.0	0.18	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.40	ug/I
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.55	ug/l
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.48	ug/l
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.51	ug/l
53-70-3	Dibenzo(a, h)anthracene	ND	1.0	0.33	ug/l
132-64-9	Dibenzofuran	ND	5.0	0.22	ug/l
84-74-2	Di-n-butyl phthalate	ND	2.0	0.50	ug/l
117-84-0	Di-n-octyl phthalate	ND	2.0	0.23	ug/l
84-66-2	Diethyl phthalate	ND	2.0	0.26	ug/l
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l
86-73-7	Fluorene	ND	1.0	0.17	ug/l
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l
87-68-3	Hexachlorobutadiene	ND	1.0	0.49	ug/i
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l
67-72-1	Hexachloroethane	ND	2.0	0.39	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.33	ug/l
78-59-1	Isophorone	ND	2.0	0.28	ug/l
90-12-0	i-Methylnaphthalene	ND	1.0	0.26	ug/l
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/l
88-74-4	2-Nitroaniline	ND	5.0	0.28	ug/l
99-09-2	3-Nitroaniline	ND	5.0	0.39	ug/l
100-01-6	4-Nitroaniline	ND	5.0	0.44	ug/l
98-95-3	Nitrobenzene	ND	2.0	0.64	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.48	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.22	ug/l
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l
129-00-0	Pyrene	ND	1.0	0.22	ug/l
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.37	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its

52%

34%

ND = Not detected MDL = Method Detection Limit

2-Fluorophenol

Phenol-d5

RL = Reporting Limit

367-12-4

4165-62-2

E = Indicates value exceeds calibration range

J = Indicates an estimated value

14-88%

10-110%

B = Indicates analyte found in associated method blank

Client Sample ID: S-40D

Lab Sample ID: JC33384-5 Matrix: AQ - Grou

Method: Project: AQ - Ground Water SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/07/16 **Date Received:** 12/09/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
118-79-6	2,4,6-Tribromophenol	94%		39-149%
4165-60-0	Nitrobenzene-d5	85%		32-128%
321-60-8	2-Fluorobiphenyl	82%		35-119%
1718-51-0	Terphenyl-d14	70%		10-126%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-40D Lab Sample ID: JC33384-5

Matrix: Method:

AQ - Ground Water

SW846 8270D BY SIM SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 12/07/16 Date Received: 12/09/16

Percent Solids: n/a

Q

Prep Batch **Analytical Batch** By **Prep Date** File ID DF Analyzed OP99210A E3P2659 12/14/16 12/18/16 SG Run #1 3P57332.D 1

Run #2

Project:

Final Volume Initial Volume Run #1 1.0 ml 1000 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units
56-55-3	Benzo(a)anthracene	ND	0.050	0.023	ug/l
50-32-8	Benzo(a)pyrene	ND	0.050	0.033	ug/l
205-99-2	Benzo(b)fluoranthene	ND	0.10	0.043	ug/l
207-08-9	Benzo(k)fluoranthene	ND	0.10	0.033	ug/l
218-01-9	Chrysene	ND	0.10	0.026	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	0.10	0.036	սց/1
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.10	0.038	ug/l
91-20-3	Naphthalene	ND	0.10	0.029	ug/l
123-91-1	1,4-Dioxane	3.27	0.10	0.049	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
4165-60-0	Nitrobenzene-d5	64%	24-125%		
321-60-8	2-Fluorobiphenyl	56%	19-127%		
1718-51-0	Terphenyl-d14	57%	10-119%		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

XPL

RL

n/a

MDL

Units

Analyzed

12/14/16

Result

Page 1 of 1

Client Sample ID: S-40D Lab Sample ID: JC33384-5

Matrix: Method: AQ - Ground Water

SW846-8015C (DAI)

DF

1

BMSMC, Building 5 Area, PR

Date Sampled: 12/07/16 Date Received: 12/09/16

Percent Solids: n/a

n/a

Q

Prep Batch **Analytical Batch Prep Date**

GGH5588

Run #1 Run #2

CAS No.

Project:

Low Molecular Alcohol List

File ID

GH107760.D

Compound

•				
Ethanol	ND	200	55	ug/l
Isobutyl Alcohol	ND	100	36	սք/1
Isopropyl Alcohol	ND	100	68	ug/l
n-Propyl Alcohol	ND	100	43	ug/l
n-Butyl Alcohol	ND	100	87	ug/l
sec-Butyl Alcohol	ND	100	66	ug/l
Methanol	ND	200	71	ug/l
Surrogate Recoveries	Run# 1	Run# 2	Lin	nits
Hexanol	120%		56-	145%
Hexanol	113%		56-	145%
	Isobutyl Alcohol Isopropyl Alcohol n-Propyl Alcohol n-Butyl Alcohol sec-Butyl Alcohol Methanol Surrogate Recoveries Hexanol	Isobutyl Alcohol ND Isopropyl Alcohol ND n-Propyl Alcohol ND n-Butyl Alcohol ND sec-Butyl Alcohol ND Methanol ND Surrogate Recoveries Run# 1 Hexanol 120%	Isobutyl Alcohol ND 100 Isopropyl Alcohol ND 100 n-Propyl Alcohol ND 100 n-Butyl Alcohol ND 100 sec-Butyl Alcohol ND 100 Methanol ND 200 Surrogate Recoveries Run# 1 Run# 2 Hexanol 120%	Isobutyl Alcohol ND 100 36 Isopropyl Alcohol ND 100 68 n-Propyl Alcohol ND 100 43 n-Butyl Alcohol ND 100 87 sec-Butyl Alcohol ND 100 66 Methanol ND 200 71 Surrogate Recoveries Run# 1 Run# 2 Lin Hexanol 120% 56-

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page I of I

Client Sample ID: S-40D Lab Sample ID: JC33384-5

Matrix: AQ - Ground Water

Method: SW846 8081B SW846 3510C Project: BMSMC, Building 5 Area, PR

Date Sampled: 12/07/16 Date Received: 12/09/16

Percent Solids: n/a

Q

Prep Batch **Analytical Batch** File ID DF By **Prep Date** Analyzed 12/15/16 CP 12/13/16 OP99184 G8G42 Run #1 8G1179.D 1

Run #2

Final Volume **Initial Volume**

Run #1 990 ml 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	
309-00-2	Aldrin	ND	0.010	0.0061	ug/l	
319-84-6	alpha-BHC	ND	0.010	0.0061	ug/l	
319-85-7	beta-BHC	ND	0.010	0.0057	ug/l	
319-86-8	delta-BHC	ND	0.010	0.0046	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0028	ug/l	
5103-71-9	alpha-Chlordane	ND	0.010	0.0047	ug/l	
5103-74-2	gamma-Chlordane	ND	0.010	0.0046	ug/l	
60-57-1	Dieldrin	ND	0.010	0.0036	ug/l	
72-54-8	4,4'-DDD	ND	0.010	0.0038	ug/l	
72-55-9	4,4'-DDE	ND	0.010	0.0062	ug/l	
50-29-3	4,4'-DDT	ND	0.010	0.0050	ug/l	
72-20-8	Endrin	ND	0.010	0.0051	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.010	0.0053	ug/l	
7421-93-4	Endrin aldehyde	ND	0.010	0.0052	ug/l	
53494-70-5	Endrin ketone	ND	0.010	0.0051	ug/l	
959-98-8	Endosulfan-i	ND	0.010	0.0050	ug/l	
33213-65-9	Endosulfan-II	ND	0.010	0.0043	ug/l	
76-44-8	Heptachlor	ND	0.010	0.0038	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.010	0.0066	ug/l	
72-43-5	Methoxychlor	ND	0.020	0.0057	ug/l	
8001-35-2	Toxaphene	ND	0.25	0.19	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	85%		26-13	32%	
877-09-8	Tetrachloro-m-xylene	88%		26-13	32%	
2051-24-3	Decachlorobiphenyl	88%		10-1	18%	
2051-24-3	Decachlorobiphenyl	90%		10-118%		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-41D

Lab Sample ID: Matrix:

Method:

JC33384-6

AQ - Ground Water

SW846 8260C

Date Sampled: 12/07/16

Date Received: 12/09/16

Percent Solids: n/a

Project: BMSMC, Building 5 Area, PR

File ID Run #1 4B67442.D

DF 1

By HT **Prep Date** n/a

Prep Batch n/a

Analytical Batch V4B2774

Run #2

Purge Volume

Compound

1.3-Butadiene

Toluene-D8

Surrogate Recoveries

Dibromofluoromethane

1,2-Dichloroethane-D4

4-Bromofluorobenzene

Run #1 5.0 ml

Run #2

CAS No.

106-99-0

CAS No.

1868-53-7

2037-26-5

460-00-4

17060-07-0

RL

5.0

MDL

0.17

Units Q

ug/l

ND

Analyzed

12/17/16

Result

Run# 1

100%

107%

100%

107%

Limits

Run# 2

76-120% 73-122% 84-119%

> 78-117% Méndez

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 3

Client Sample ID: S-41D Lab Sample ID: JC33384-6

Matrix: AQ - Ground Water

Method: SW846 8270D SW846 3510C

Date Sampled: 12/07/16 Date Received: 12/09/16

Percent Solids: n/a

Q

Project: BMSMC, Building 5 Area, PR

Analytical Batch Prep Batch File ID DF Analyzed By **Prep Date** OP99210 EM5553 M130035.D 12/16/16 KM 12/14/16 Run #1 1

Run #2

Final Volume **Initial Volume**

970 ml Run #1

I.0 ml

Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.2	0.85	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.2	0.92	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.1	1.3	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.2	2.5	ug/l
51-28-5	2,4-Dinitrophenol	ND	10	1.6	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.2	1.3	ug/l
95-48-7	2-Methylphenol	ND	2.1	0.92	ug/l
	3&4-Methylphenol	ND	2.1	0.91	ug/l
88-75-5	2-Nitrophenol	ND	5.2	0.99	ug/l
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l
87-86-5	Pentachlorophenol	ND	4.1	1.4	ug/l
108-95-2	Phenol	ND	2.1	0.40	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.2	1.5	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.2	1.4	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.2	0.95	ug/l
83-32-9	Acenaphthene	ND	1.0	0.20	ug/l
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l
98-86-2	Acetophenone	ND	2.1	0.21	ug/l
120-12-7	Anthracene	ND	1.0	0.22	ug/l
1912-24-9	Atrazine	ND	2.1	0.46	ug/l
100-52-7	Benzaldehyde	ND	5.2	0.30	ug/l
56-55-3	Benzo(a)anthracene	ND	1.0	0.21	ug/l
50-32-8	Benzo(a)pyrene	ND	1.0	0.22	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.35	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.1	0.42	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.1	0.47	ug/l
92-52-4	1, 1'-Biphenyl	ND	1.0	0.22	ug/l
91-58-7	2-Chloronaphthalene	ND	2.1	0.24	ug/l
106-47-8	4-Chloroaniline	ND	5.2	0.35	ug/l
86-74-8	Carbazole	ND	1.0	0.24	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: S-41D Lab Sample ID: JC33384-6

Matrix: AQ - Ground Water

Method: SW846 8270D SW846 3510C Project: BMSMC, Building 5 Area, PR

Date Sampled: 12/07/16
Date Received: 12/09/16
Percent Solids: n/a

Q

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
105-60-2	Caprolactam	ND	2.1	0.67	ug/l
218-01-9	Chrysene	ND	1.0	0.18	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	2.1	0.29	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	2.1	0.26	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.1	0.42	ug/l
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.1	0.38	ug/l
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.57	ug/l
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.49	ug/i
91-94-1	3,3'-Dichlorobenzidine	ND	2.1	0.52	սջ/1
53-70-3	Dibenzo(a, h)anthracene	ND	1.0	0.34	ug/l
132-64-9	Dibenzofuran	ND	5.2	0.23	ug/l
84-74-2	Di-n-butyl phthalate	ND	2.1	0.51	ug/l
117-84-0	Di-n-octyl phthalate	ND	2.1	0.24	ug/l
84-66-2	Diethyl phthalate	ND	2.1	0.27	ug/l
131-11-3	Dimethyl phthalate	ND	2.1	0.22	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	1.7	ug/l
206-44-0	Fluoranthene	ND	1.0	0.18	ug/l
86-73-7	Fluorene	ND	1.0	0.18	ug/l
118-74-1	Hexachlorobenzene	ND	1.0	0.34	ug/l
87-68-3	Hexachlorobutadiene	ND	1.0	0.51	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	10	2.9	ug/l
67-72-1	Hexachloroethane	ND	2.1	0.40	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.34	ug/l
78-59-1	Isophorone	ND	2.1	0.29	ug/l
90-12-0	1-Methylnaphthalene	ND	1.0	0.27	ug/l
91-57-6	2-Methylnaphthalene	ND	1.0	0.22	ug/l
88-74-4	2-Nitroaniline	ND	5.2	0.29	ug/l ·
99-09-2	3-Nitroaniline	ND	5.2	0.40	ug/l
100-01-6	4-Nitroaniline	ND	5.2	0.45	ug/l
98-95-3	Nitrobenzene	ND	2.1	0.66	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	2.1	0.50	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	5.2	0.23	ug/l
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l
129-00-0	Pyrene	ND	1.0	0.23	ug/l
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.1	0.38	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
367-12-4	2-Fluorophenol	52%		14-8	
4165-62-2	Phenol-d5	36%		10-1	10%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: S-41D

Lab Sample ID: JC33384-6

Matrix:

AQ - Ground Water

SW846 8270D SW846 3510C Method: Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/07/16 Date Received: 12/09/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
118-79-6	2,4,6-Tribromophenol	92%		39-149%
4165-60-0	Nitrobenzene-d5	86%		32-128%
321-60-8	2-Fluorobiphenyl	83%		35-119%
1718-51-0	Terphenyl-d14	67%		10-126%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

IJ

12/14/16

Page 1 of 1

Client Sample ID: S-41D Lab Sample ID: JC33384-6

File ID

4P20218.D

Matrix:

AQ - Ground Water

DF

1

SW846 8270D BY SIM SW846 3510C

Analyzed

12/16/16

Method: Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/07/16 Date Received: 12/09/16

Percent Solids: n/a

OP99210A

Q

Analytical Batch Prep Batch Prep Date

E4P1098

Run #1 Run #2

Final Volume **Initial Volume** Run #1 970 ml 1.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units
56-55-3	Benzo(a)anthracene	ND	0.052	0.024	ug/l
50-32-8	Benzo(a)pyrene	ND	0.052	0.034	ug/l
205-99-2	Benzo(b)fluoranthene	ND	0.10	0.045	ug/l
207-08-9	Benzo(k)fluoranthene	ND	0.10	0.034	ug/l
218-01-9	Chrysene	ND	0.10	0.027	ug/1
53-70-3	Dibenzo(a,h)anthracene	ND	0.10	0.037	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.10	0.039	ug/l
91-20-3	Naphthalene	ND	0.10	0.030	นg/l
123-91-1	1,4-Dioxane	0.746	0.10	0.050	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
4165-60-0	Nitrobenzene-d5	86%		24-1	25%
321-60-8	2-Fluorobiphenyl	60%		19-1	27%
1718-51-0	Terphenyl-d14	76%		10-1	19%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ACCUTEST

Report of Analysis

Page 1 of 1

Date Sampled: 12/07/16

Q

Client Sample ID: S-41D

Lab Sample ID: JC33384-6 Matrix: AQ - Ground Water Method:

Date Received: 12/09/16 Percent Solids: n/a SW846-8015C (DAI)

Project: BMSMC, Building 5 Area, PR

Analytical Batch File ID By **Prep Date** Prep Batch DF Analyzed GGH5588 XPL Run #1 12/14/16 GH107751.D n/a n/a

Run #2

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units	
64.17.5	Palearal	MID	200	55	/1	
64-17-5	Ethanol	ND		55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	Limits	
111-27-3	Hexanol	90%		56-1	45%	
111-27-3	Hexanol	88%		56-1	45%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-41D

Lab Sample ID: JC33384-6 Matrix:

AQ - Ground Water

Date Sampled: 12/07/16 Date Received: 12/09/16

Method:

SW846 8081B SW846 3510C

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Prep Batch **Analytical Batch**

File ID DF 8G1180.D Run #1 1

Run #2

By **Prep Date** Analyzed CP 12/13/16 OP99184 G8G42 12/15/16

Q

Initial Volume Final Volume

990 ml Run #1

10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	1
309-00-2	Aldrin	ND	0.010	0.0061	ug/l	
319-84-6	alpha-BHC	ND	0.010	0.0061	ug/l	
319-85-7	beta-BHC	ND	0.010	0.0057	ug/l	
319-86-8	delta-BHC	ND	0.010	0.0046	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0028	ug/l	
5103-71-9	alpha-Chlordane	ND	0.010	0.0047	ug/l	
5103-74-2	gamma-Chlordane	ND	0.010	0.0046	ug/l	
60-57-1	Dieldrin	ND	0.010	0.0036	ug/l	
72-54-8	4,4'-DDD	ND	0.010	0.0038	ug/l	
72-55-9	4,4'-DDE	ND	0.010	0.0062	ug/l	
50-29-3	4,4'-DDT	ND	0.010	0.0050	ug/l	
72-20-8	Endrin	ND	0.010	0.0051	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.010	0.0053	ug/l	
7421-93-4	Endrin aldehyde	ND	0.010	0.0052	ug/l	
53494-70-5	Endrin ketone	ND	0.010	0.0051	ug/l	
959-98-8	Endosulfan-I	ND	0.010	0.0050	ug/l	
33213-65-9	Endosulfan-II	ND	0.010	0.0043	ug/l	
76-44-8	Heptachlor	ND	0.010	0.0038	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.010	0.0066	ug/l	
72-43-5	Methoxychlor	ND	0.020	0.0057	ug/l	
8001-35-2	Toxaphene	ND	0.25	0.19	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 2 Limits		
877-09-8	Tetrachloro-m-xylene	81%		26-13	32%	
877-09-8	Tetrachloro-m-xylene	85%		26-13	32%	
2051-24-3	Decachlorobiphenyl	95%		10-I	18%	
2051-24-3	Decachlorobiphenyl	96%		10- 1	18%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: S-40S

Lab Sample ID: JC33384-7

Matrix: Method:

Project:

AQ - Ground Water

SW846 8260C

BMSMC, Building 5 Area, PR

Date Sampled: 12/07/16

Date Received: 12/09/16

Q

Percent Solids: n/a

File ID Prep Batch **Analytical Batch** DF Analyzed By **Prep Date** HT V4B2775 Run #1 4B67473.D 12/18/16 n/a n/a Run #2

Purge Volume

Run #1 5.0 ml

Run #2

CAS No. Compound Result RL MDL Units 106-99-0 1,3-Butadiene ND 5.0 0.17 ug/l CAS No. **Surrogate Recoveries** Run# 1 Run# 2 Limits Dibromofluoromethane 103% 76-120% 1868-53-7 17060-07-0 1.2-Dichloroethane-D4 110% 73-122% 2037-26-5 Toluene-D8 98% 84-119% 4-Bromofluorobenzene 109% 78-117% 460-00-4

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 3

Client Sample ID: S-40S

Lab Sample ID: JC33384-7

Matrix:

AQ - Ground Water

Date Received: 12/09/16

Date Sampled: 12/07/16

Method:

SW846 8270D SW846 3510C

DF

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Q

Run #1

File ID M130036.D Analyzed 12/16/16

Ву KM Prep Date 12/14/16

Prep Batch OP99210

Analytical Batch EM5553

Run #2

Initial Volume

Final Volume

980 mi

1.0 ml

Run #1 Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.1	0.84	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.1	0.91	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.1	2.5	ug/l
51-28-5	2,4-Dinitrophenol	ND	10	1.6	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.1	1.3	ug/l
95-48-7	2-Methylphenol	ND	2.0	0.91	ug/l
	3&4-Methylphenol	ND	2.0	0.90	ug/l
88-75-5	2-Nitrophenol	ND	5.1	0.98	ug/l
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l
87-86-5	Pentachlorophenol	ND	4.1	1.4	ug/l
108-95-2	Phenol	ND	2.0	0.40	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.1	1.5	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.1	1.4	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.1	0.94	ug/l
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l
98-86-2	Acetophenone	ND	2.0	0.21	ug/l
120-12-7	Anthracene	ND	1.0	0.22	ug/l
1912-24-9	Atrazine	ND	2.0	0.46	ug/l
100-52-7	Benzaldehyde	ND	5.1	0.29	ug/l
56-55-3	Benzo(a)anthracene	ND	1.0	0.21	ug/l
50-32-8	Benzo(a)pyrene	ND	1.0	0.22	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.35	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.41	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.0	0.47	ug/l
92-52-4	1,1'-Biphenyl	ND	1.0	0.22	սք/1
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l
106-47-8	4-Chloroaniline	ND	5.1	0.35	ug/l
86-74-8	Carbazole	ND	1.0	0.23	ug/l

ND Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Project:

Client Sample ID: S-40S

Lab Sample ID: JC33384-7

Matrix: AQ - Ground Water Method:

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/07/16 Date Received: 12/09/16

Percent Solids: n/a

Q

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
105-60-2	Caprolactam	ND	2.0	0.66	ug/l
218-01-9	Chrysene	ND	1.0	0.18	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.41	ug/l
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.56	ug/l
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.49	ug/l
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.52	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.34	ug/l
132-64-9	Dibenzofuran	ND	5.1	0.22	ug/l
84-74-2	Di-n-butyl phthalate	ND	2.0	0.51	ug/l
117-84-0	Di-n-octyl phthalate	ND	2.0	0.24	ug/l
84-66-2	Diethyl phthalate	ND	2.0	0.27	ug/l
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l
86-73-7	Fluorene	ND	1.0	0.17	ug/l
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l
87-68-3	Hexachlorobutadiene	ND	1.0	0.50	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l
67-72-1	Hexachloroethane	ND	2.0	0.40	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.34	ug/l
78-59-1	Isophorone	ND	2.0	0.28	ug/l
90-12-0	I-Methylnaphthalene	ND	1.0	0.27	ug/l
91-57-6 .	2-Methylnaphthalene	ND	1.0	0.21	ug/l
88-74-4	2-Nitroaniline	ND	5.1	0.28	ug/l
99-09-2	3-Nitroaniline	ND	5.1	0.39	ug/l
100-01-6	4-Nitroaniline	ND	5.1	0.45	ug/l
98-95-3	Nitrobenzene	ND	2.0	0.66	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.49	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	5.1	0.23	ug/l
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l
129-00-0	Pyrene	ND	1.0	0.22	ug/l
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.38	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
367-12-4	2-Fluorophenol	44%		14-88%	

ND = Not detected

4165-62-2

MDL = Method Detection Limit

29%

RL = Reporting Limit

E = Indicates value exceeds calibration range

Phenol-d5

J = Indicates an estimated value

10-110%

B = Indicates analyte found in associated method blank

Client Sample ID: S-40S Lab Sample ID: JC33384-7

Matrix:

AQ - Ground Water

Method: Project:

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/07/16 Date Received: 12/09/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
118-79-6	2,4,6-Tribromophenol	101%		39-149%
4165-60-0	Nitrobenzene-d5	81%		32-128%
321-60-8	2-Fluorobiphenyl	82%		35-119%
1718-51-0	Terphenyl-d14	81%		10-126%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-40S

Lab Sample ID: JC33384-7

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D BY SIM SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 12/07/16

Q

Date Received: 12/09/16

Percent Solids: n/a

Analytical Batch File ID DF By **Prep Date** Prep Batch Analyzed 3P57333.D 12/18/16 SG 12/14/16 OP99210A E3P2659 Run #1 1 Run #2

Final Volume **Initial Volume** Run #1 980 ml 1.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units	
56-55-3	Benzo(a)anthracene	ND	0.051	0.023	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.051	0.034	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.10	0.044	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.10	0.034	ug/l	
218-01-9	Chrysene	ND	0.10	0.027	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.10	0.037	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.10	0.039	ug/l	
91-20-3	Naphthalene	ND	0.10	0.030	ug/l	
123-91-1	1,4-Dioxane	0.222	0.10	0.050	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	Limits	
4165-60-0	Nitrobenzene-d5	60%		24-1	25%	
321-60-8	2-Fluorobiphenyl	54%		19-1	27%	
1718-51-0	Terphenyl-d14	59%	10-119%			

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

By

XPL

Page 1 of 1

Client Sample ID: S-40S

JC33384-7

Date Sampled: 12/07/16

Lab Sample ID: Matrix:

AQ - Ground Water

Date Received: 12/09/16

Method:

SW846-8015C (DAI)

1

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Analytical Batch

Run #1

DF Analyzed

12/14/16

Prep Date n/a

Prep Batch n/a

Q

GGH5588

Run #2

Low Molecular Alcohol List

File ID

GH107761.D

CAS No.	Compound	Result	RL	MDL	Units	
64-17-5	Ethanol	ND	200	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	Limits	
111-27-3	Hexanol	112%		56-14	15%	
111-27-3	Hexanol	108%		56-14	15%	

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-40S Lab Sample ID: JC33384-7

Matrix:

AQ - Ground Water

DF

1

Date Sampled: 12/07/16 Date Received: 12/09/16

Percent Solids: n/a

Method: Project:

RSK-175

BMSMC, Building 5 Area, PR

Prep Batch Analytical Batch n/a

Run #1 Run #2

Compound

File ID

Result

RL

By

LM

MDL

Prep Date

n/a

Units

ug/l

Q

GAA1095

CAS No.

74-82-8

Methane

AA56404.D

26.7

Analyzed

12/16/16

0.11

0.036

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-40S

Lab Sample ID: JC33384-7

Matrix:

AQ - Ground Water

Method: Project:

SW846 8081B SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/07/16 Date Received: 12/09/16

Percent Solids: n/a

Q

File ID DF By **Prep Date** Prep Batch **Analytical Batch** Analyzed CP OP99184 G8G42 Run #1 8G1183.D 1 12/15/16 12/13/16

Run #2

Initial Volume **Final Volume**

Run #1 1000 ml

Run #2

10.0 ml

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	
309-00-2	Aldrin	ND	0.010	0.0060	ug/l	
319-84-6	alpha-BHC	ND	0.010	0.0060	ug/l	
319-85-7	beta-BHC	ND	0.010	0.0057	ug/l	
319-86-8	delta-BHC	ND	0.010	0.0046	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0028	ug/l	
5103-71-9	alpha-Chlordane	ND	0.010	0.0046	ug/l	
5103-74-2	gamma-Chlordane	ND	0.010	0.0046	ug/l	
60-57-1	Dieldrin	ND	0.010	0.0036	ug/l	
72-54-8	4,4'-DDD	ND	0.010	0.0038	ug/l	
72-55-9	4,4'-DDE	ND	0.010	0.0062	ug/l	
50-29-3	4,4'-DDT	ND	0.010	0.0050	ug/l	
72-20-8	Endrin	ND	0.010	0.0050	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.010	0.0053	ug/l	
7421-93-4	Endrin aldehyde	ND	0.010	0.0051	ug/l	
53494-70-5	Endrin ketone	ND	0.010	0.0051	ug/l	
959-98-8	Endosulfan-I	ND	0.010	0.0050	ug/l	
33213-65-9	Endosulfan-II	ND	0.010	0.0043	ug/l	
76-44-8	Heptachlor	ND	0.010	0.0038	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.010	0.0065	ug/l	
72-43-5	Methoxychlor	ND	0.020	0.0057	ug/l	
8001-35-2	Toxaphene	ND	0.25	0.18	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	Limits	
877-09-8	Tetrachloro-m-xylene	81%		26-13	32%	
877-09-8	Tetrachloro-m-xylene	85%		26-13	32%	
2051-24-3	Decachlorobiphenyl	57%		10-1	18%	
2051-24-3	Decachlorobiphenyl	55%		10-1	18%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: S-40S

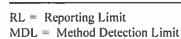
Lab Sample ID: Matrix:

JC33384-7 AQ - Ground Water Date Sampled: 12/07/16 Date Received: 12/09/16

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR


Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron Manganese	3170 2960	100 15	12 0.39	ug/l ug/l			12/16/16 ND 12/16/16 ND	SW846 6010C ^I SW846 6010C ^I	SW846 3010A ² SW846 3010A ²

(1) Instrument QC Batch: MA40977

(2) Prep QC Batch: MP97634

Client Sample ID: S-40S Lab Sample ID: JC33384-7

Matrix: AQ - Ground Water

Date Sampled: 12/07/16 **Date Received:** 12/09/16

fael Infanto Méndez

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as CaCO3	624	5.0	mg/l	1	12/15/16 23:25		SM2320 B-11
Iron, Ferric ^a	3.1	0.30	mg/l	1	12/16/16 19:56	ND	SM3500FE B-11
Iron, Ferrous b	< 0.20	0.20	mg/l	1	12/10/16 13:35	YR	SM3500FE B-11
Nitrogen, Nitrate c	< 0.11	0.11	mg/l	1	12/21/16 13:38	YZ	EPA353.2/SM4500NO2B
Nitrogen, Nitrate + Nitrite	< 0.10	0.10	mg/l	1	12/21/16 13:38	YZ	EPA 353 2/LACHAT
Nitrogen, Nitrite d	< 0.010	0.010	mg/l	1	12/09/16 22:48	CB	SM4500NO2 B-11
Sulfate	47.6	10	mg/l	1	12/19/16 23:56	JN	EPA 300/SW846 9056A
Sulfide	< 2.0	2.0	mg/l	1	12/13/16 21:45	CB	SM4500S2- F-11

(a) Calculated as: (Iron) - (Iron, Ferrous)

(b) Field analysis required. Received out of hold time and analyzed by request.

(c) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite) Nitrogen, Nitrite analysis done past holding time.

(d) Received and analyzed out of holding time.

Report of Analysis

By

HT

Page 1 of 1

Client Sample ID: S-41S

Lab Sample ID: JC33384-8

File ID

4B67470.D

Matrix: Method:

Project:

AQ - Ground Water

DF

1

SW846 8260C

BMSMC, Building 5 Area, PR

Date Sampled: 12/07/16 Date Received: 12/09/16

Percent Solids: n/a

n/a

Analyzed

12/18/16

Prep Batch **Analytical Batch Prep Date** V4B2775

Run #1 Run #2

Purge Volume

Compound

Run #1 5.0 ml

Run #2

CAS No.

RL **MDL** Units Q Result

n/a

106-99-0 1,3-Butadiene ND 5.0 0.17 ug/l

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

Dibromofluoromethane 76-120% 1868-53-7 103% 1,2-Dichloroethane-D4 73-122% 110% 17060-07-0

Toluene-D8 84-119% 2037-26-5 100% 460-00-4 4-Bromofluorobenzene 109% 78-117%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Client Sample ID: S-41S

Lab Sample ID: JC33384-8

Matrix: Method:

AQ - Ground Water

SW846 8270D SW846 3510C

Date Sampled: 12/07/16 Date Received: 12/09/16

Q

Percent Solids: n/a

BMSMC, Building 5 Area, PR Project:

Analytical Batch File ID DF By **Prep Date** Prep Batch Analyzed OP99210 EM5553 KM 12/14/16 Run #1 M130037.D 12/16/16 1

Run #2

Final Volume Initial Volume

Run #1 980 ml

1.0 ml

Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.1	0.84	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.1	0.91	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.1	2.5	սջ/l
51-28-5	2,4-Dinitrophenol	ND	10	1.6	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.1	1.3	ug/l
95-48-7	2-Methylphenol	ND	2.0	0.91	ug/l
	3&4-Methylphenol	ND	2.0	0.90	ug/l
88-75-5	2-Nitrophenol	ND	5.1	0.98	ug/l
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l
87-86-5	Pentachlorophenol	ND	4.1	1.4	ug/l
108-95-2	Phenol	ND	2.0	0.40	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.1	1.5	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.1	1.4	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.1	0.94	ug/l
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l
98-86-2	Acetophenone	ND	2.0	0.21	ug/l
120-12-7	Anthracene	ND	1.0	0.22	ug/l
1912-24-9	Atrazine	ND	2.0	0.46	ug/l
100-52-7	Benzaldehyde	ND	5.1	0.29	ug/l
56-55-3	Benzo(a)anthracene	ND	1.0	0.21	ug/l
50-32-8	Benzo(a)pyrene	ND	1.0	0.22	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.35	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.41	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.0	0.47	ug/l
92-52-4	1, 1'-Biphenyl	ND	1.0	0.22	ug/i
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l
106-47-8	4-Chloroaniline	ND	5. I	0.35	ug/l
86-74-8	Carbazole	ND	1.0	0.23	սք/1

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID: JC33384-8

Matrix:

AQ - Ground Water

Method: Project: SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/07/16 **Date Received:** 12/09/16

Percent Solids: n/a

4

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.0	0.66	ug/l	
218-01-9	Chrysene	ND	1.0	0.18	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/1	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.41	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.56	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.49	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.52	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.34	ug/l	
132-64-9	Dibenzofuran	ND	5.1	0.22	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.51	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.24	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.27	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l	
86-73-7	Fluorene	ND	1.0	0.17	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l	
87-68-3	Hexachlorobutadiene	ND	0.1	0.50	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l	
67-72-1	Hexachloroethane	ND	2.0	0.40	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.34	ug/l	
78-59-1	Isophorone	ND	2.0	0.28	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.0	0.27	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/l	
88-74-4	2-Nitroaniline	ND	5.1	0.28	ug/l	
99-09-2	3-Nitroaniline	ND	5.1	0.39	ug/l	
100-01-6	4-Nitroaniline	ND	5.1	0.45	ug/l	
98-95-3	Nitrobenzene	ND	2.0	0.66	ug/I	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.49	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.1	0.23	ug/l	
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l	1
129-00-0	Pyrene	ND	1.0	0.22	ug/l	1
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.38	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	

ND = Not detected

367-12-4

4165-62-2

MDL = Method Detection Limit

52%

37%

RL = Reporting Limit

E = Indicates value exceeds calibration range

2-Fluorophenol

Phenol-d5

J = Indicates an estimated value

14-88%

10-110%

B = Indicates analyte found in associated method blank

Client Sample ID: S-41S Lab Sample ID:

Matrix:

JC33384-8 AQ - Ground Water

Method:

SW846 8270D SW846 3510C

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/07/16 Date Received: 12/09/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
118-79-6	2,4,6-Tribromophenol	110%		39-149%
4165-60-0	Nitrobenzene-d5	90%		32-128%
321-60-8	2-Fluorobiphenyl	89%		35-119%
1718-51-0	Terphenyl-d14	75%		10-126%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

SG

Prep Date

12/14/16

Page 1 of 1

Client Sample ID: S-41S Lab Sample ID:

Matrix:

Method:

Project:

JC33384-8

AQ - Ground Water

SW846 8270D BY SIM SW846 3510C

12/18/16

Date Sampled: Date Received:

0

12/07/16 12/09/16

Percent Solids: n/a

BMSMC, Building 5 Area, PR

File ID DF Analyzed

Analytical Batch Prep Batch OP99210A E3P2659

Run #1 Run #2

Initial Volume Final Volume Run #1 980 ml 1.0 ml

3P57334.D

Run #2

CAS No. Compound Result RL MDL Units 56-55-3 Benzo(a)anthracene ND 0.0510.023 ug/l 50-32-8 Benzo(a)pyrene ND 0.051 0.034 ug/l 205-99-2 Benzo(b)fluoranthene ND 0.10 0.044 ug/l 207-08-9 Benzo(k)fluoranthene ND 0.10 0.034 ug/l 0.027218-01-9 Chrysene ND 0.10 ug/l 53-70-3 Dibenzo(a,h)anthracene ND 0.10 0.037 ug/l 193-39-5 Indeno(1,2,3-cd)pyrene ND 0.10 0.039 ug/l 0.030 91-20-3 Naphthalene ND 0.10 ug/l 123-91-1 1,4-Dioxane 1.84 0.10 0.050 ug/l Run# 2 CAS No. Run# 1 Limits **Surrogate Recoveries** 4165-60-0 Nitrobenzene-d5 67% 24-125% 19-127% 321-60-8 2-Fluorobiphenyl 60% 1718-51-0 Terphenyl-d14 58% 10-119%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

XPL

n/a

Analyzed

12/14/16

Page 1 of 1

Client Sample ID: S-41S Lab Sample ID: JC33384-8

Matrix: Method: AQ - Ground Water

SW846-8015C (DAI)

DF

1

BMSMC, Building 5 Area, PR

Date Sampled: 12/07/16 Date Received: 12/09/16

Percent Solids: n/a

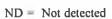
n/a

Q

Analytical Batch Prep Date Prep Batch GGH5588

Run #1 Run #2

Project:


Low Molecular Alcohol List

File ID

GH107762.D

CAS No.	Compound	Result	RL	MDL	Units
64-17-5	Ethanol	ND	200	55	ug/l
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l
67-56-1	Methanol	ND	200	71	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
111-27-3	Hexanol	114%		56-1	45%
111-27-3	Hexanol	123%		56-1	45%

MDL Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: S-41S

Lab Sample ID: JC33384-8

Matrix:

AQ - Ground Water

Method:

RSK-175

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/07/16 Date Received: 12/09/16

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	AA56406.D	10	12/16/16	LM	n/a	n/a	GAA1095

Run #2

CAS No. Compound Result RL MDL Units Q	CAS No.	Compound	Result	RL	MDL	Units	Q
--	---------	----------	--------	----	-----	-------	---

ug/l 74-82-8 Methane 375 1.1 0.36

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of I

Client Sample ID: S-41S Lab Sample ID: JC33384-8

Matrix:

AQ - Ground Water

SW846 8081B SW846 3510C

Method: Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/07/16 Date Received: 12/09/16

Q

Percent Solids: n/a

Analytical Batch File ID Prep Batch DF By Prep Date Analyzed CP OP99184 G8G42 8G1184.D 12/15/16 12/13/16 Run #1 1

Run #2

Final Volume Initial Volume

Run #1 980 ml 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin	ND	0.010	0.0062	ug/l
319-84-6	alpha-BHC	ND	0.010	0.0061	ug/l
319-85-7	beta-BHC	ND	0.010	0.0058	ug/l
319-86-8	delta-BHC	ND	0.010	0.0047	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0028	ug/l
5103-71-9	alpha-Chlordane	ND	0.010	0.0047	ug/l
5103-74-2	gamma-Chlordane	ND	0.010	0.0047	ug/l
60-57-1	Dieldrin	ND	0.010	0.0037	սք/l
72-54-8	4,4'-DDD	ND	0.010	0.0039	ug/l
72-55-9	4,4'-DDE	ND	0.010	0.0063	ug/l
50-29-3	4,4' - DDT	ND	0.010	0.0051	ug/l
72-20-8	Endrin	ND	0.010	0.0051	ug/l
1031-07-8	Endosulfan sulfate	ND	0.010	0.0054	ug/l
7421-93-4	Endrin aldehyde	ND	0.010	0.0052	ug/l
53494-70-5	Endrin ketone	ND	0.010	0.0052	ug/l
959-98-8	Endosulfan-I	ND	0.010	0.0051	ug/l
33213-65-9	Endosulfan-II	ND	0.010	0.0044	ug/l
76-44-8	Heptachlor	ND	0.010	0.0039	ug/l
1024-57-3	Heptachlor epoxide	ND	0.010	0.0067	ug/l
72-43-5	Methoxychlor	ND	0.020	0.0058	ug/l
8001-35-2	Toxaphene	ND	0.26	0.19	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limit		ts
877-09-8	Tetrachloro-m-xylene	82%		26-13	32%
877-09-8	Tetrachloro-m-xylene	86%		26-13	32%
2051-24-3	Decachlorobiphenyl	67%		10-1	18%
2051-24-3	Decachlorobiphenyl	70%		10-1	18%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page I of I

Report of Analysis

Client Sample ID: S-41S Lab Sample ID:

JC33384-8

Matrix:

AQ - Ground Water

Date Sampled: 12/07/16

Date Received: 12/09/16

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron Manganese	6910 691	100 15		ug/l ug/l				SW846 6010C ¹ SW846 6010C ¹	SW846 3010A ² SW846 3010A ²

(1) Instrument QC Batch: MA40977

(2) Prep QC Batch: MP97634

Page 1 of 1

Client Sample ID: S-41S Lab Sample ID:

JC33384-8

Matrix:

AQ - Ground Water

Date Sampled: 12/07/16

Date Received: 12/09/16

Project:

BMSMC, Building 5 Area, PR

Percent Solids: n/a

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as CaCO3	379	5.0	mg/l	1	12/15/16 23:25	СВ	SM2320 B-11
Iron, Ferric ^a	6.8	0.30	mg/l	1	12/16/16 20:00	ND	SM3500FE B-11
Iron, Ferrous b	< 0.20	0.20	mg/l	I	12/10/16 13:35	YR	SM3500FE B-11
Nitrogen, Nitrate c	< 0.11	0.11	mg/l	1	12/21/16 13:39	YZ	EPA353,2/SM4500NO2B
Nitrogen, Nitrate + Nitrite	< 0.10	0.10	mg/l	1	12/21/16 13:39	YZ	EPA 353, 2/LACHAT
Nitrogen, Nitrite d	< 0.010	0.010	mg/l	1	12/09/16 22:48	CB	SM4500NO2 B-11
Sulfate	71.1	10	mg/l	1	12/20/16 00:20	JN	EPA 300/SW846 9056A
Sulfide	< 2.0	2.0	mg/l	1	12/13/16 21:45	СВ	SM4500S2- F-11

- (a) Calculated as: (Iron) (Iron, Ferrous)
- (b) Field analysis required. Received out of hold time and analyzed by request.
- (c) Calculated as: (Nitrogen, Nitrate + Nitrite) (Nitrogen, Nitrite) Nitrogen, Nitrite analysis done past holding time.
- (d) Received and analyzed out of holding time.

Page 1 of 1

SGS Accutest

Report of Analysis

Client Sample ID: FB120716 Lab Sample ID: JC33384-9

Matrix:

AQ - Field Blank Water

Method:

SW846 8260C

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/07/16

Q

Date Received: 12/09/16

Percent Solids: n/a

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	4B67475.D	1	12/18/16	HT	n/a	n/a	V4B2775
Run #2							

Purge Volume Run #1

Run #2

5.0 ml

CAS No.	Compound	Result	RL	MDL	Units
106-99-0	1,3-Butadiene	ND	5.0	0.17	ug/l

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7 17060-07-0	Dibromofiuoromethane 1,2-Dichloroethane-D4	103% 111%		76-120% 73-122%
2037-26-5 460-00-4	Toluene-D8 4-Bromofluorobenzene	99% 107%		84-119% 78-117%

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 3

Client Sample ID: FB120716 Lab Sample ID: JC33384-9

Matrix:

AQ - Field Blank Water

Method: Project:

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/07/16 Date Received: 12/09/16

Percent Solids: n/a

Q

File ID DF Analyzed By **Prep Date** Prep Batch **Analytical Batch** Run #1 M130029.D 12/15/16 12/14/16 OP99210 EM5553 E KM

Run #2

Run #1

Run #2

Initial Volume 930 ml

Final Volume

1.0 ml

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.4	0.88	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.4	0.96	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.2	1.4	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.4	2.6	ug/l
51-28-5	2,4-Dinitrophenol	ND	11	1.7	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.4	1.4	ug/l
95-48-7	2-Methylphenol	ND	2.2	0.95	ug/l
	3&4-Methylphenol	ND	2.2	0.95	ug/l
88-75-5	2-Nitrophenol	ND	5.4	1.0	ug/l
100-02-7	4-Nitrophenol	ND	11	1.2	ug/l
87-86-5	Pentachlorophenol	ND	4.3	1.5	ug/l
108-95-2	Phenol	ND	2.2	0.42	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.4	1.6	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.4	1.4	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.4	0.99	ug/l
83-32-9	Acenaphthene	ND	1.1	0.21	ug/l
208-96-8	Acenaphthylene	ND	1.1	0.15	ug/l
98-86-2	Acetophenone	ND	2.2	0.22	ug/l
120-12-7	Anthracene	ND	1.1	0.23	ug/l
1912-24-9	Atrazine	ND	2.2	0.48	ug/l
100-52-7	Benzaldehyde	ND	5.4	0.31	ug/l
56-55-3	Benzo(a)anthracene	ND	1.1	0.22	ug/l
50-32-8	Benzo(a)pyrene	ND	1.1	0.23	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.22	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.37	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.22	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.2	0.43	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.2	0.49	ug/l
92-52-4	1, 1'-Biphenyl	ND	1.1	0.23	ug/l
91-58-7	2-Chloronaphthalene	ND	2.2	0.25	ug/l
106-47-8	4-Chloroaniline	ND	5.4	0.37	ug/l
86-74-8	Carbazole	ND	1.1	0.25	นg/โ

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: FB120716 Lab Sample ID: JC33384-9

Matrix: AQ - Field Blank Water Method: SW846 8270D SW846 3510C Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/07/16 Date Received: 12/09/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.2	0.70	ug/l	
218-01-9	Chrysene	ND	1.1	0.19	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.2	0.30	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.2	0.27	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.2	0.43	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.2	0.39	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.59	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.51	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.2	0.55	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.36	ug/l	
132-64-9	Dibenzofuran	ND	5.4	0.24	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.2	0.53	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.2	0.25	ug/l	
84-66-2	Diethyl phthalate	ND	2.2	0.28	ug/l	
131-11-3	Dimethyl phthalate	ND	2.2	0.23	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.2	1.8	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.18	ug/l	
86-73-7	Fluorene	ND	1.1	0.18	ug/l	
118-74-1	Hexachlorobenzene	ND	1.1	0.35	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.1	0.53	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	3.0	ug/l	
67-72-1	Hexachloroethane	ND	2.2	0.42	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.36	ug/l	
78-59-1	Isophorone	ND	2.2	0.30	ug/l	
90-12-0	I-Methylnaphthalene	ND	1.1	0.28	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.1	0.23	ug/l	
88-74-4	2-Nitroaniline	ND	5.4	0.30	ug/l	
99-09-2	3-Nitroaniline	ND	5.4	0.42	ug/l	
100-01-6	4-Nitroaniline	ND	5.4	0.47	ug/l	
98-95-3	Nitrobenzene	ND	2.2	0.69	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.2	0.52	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.4	0.24	ug/l	0.00
85-01-8	Phenanthrene	ND	1.1	0.19	ug/l	1-
129-00-0	Pyrene	ND	1.1	0.24	ug/l	- /
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.2	0.40	ug/l	`
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluoronhenol	49%		14-8	R%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Méndez

Client Sample ID: FB120716

Lab Sample ID: JC33384-9

Matrix: Method:

Project:

AQ - Field Blank Water

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR **Date Sampled:** 12/07/16 **Date Received:** 12/09/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
118-79-6	2,4,6-Tribromophenol	92%		39-149%
4165-60-0	Nitrobenzene-d5	87%		32-128%
321-60-8	2-Fluorobiphenyl	85%		35-119%
1718-51-0	Terphenyl-d14	91%		10-126%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: FB120716

Lab Sample ID: JC33384-9

Matrix: Method:

Project:

207-08-9

218-01-9

53-70-3

AQ - Field Blank Water

Benzo(k)fluoranthene

Dibenzo(a,h)anthracene

Chrysene

SW846 8270D BY SIM SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/07/16 Date Received: 12/09/16

Percent Solids: n/a

	- : :::						
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	3P57335.D	1	12/18/16	SG	12/14/16	OP99210A	E3P2659
Run #2							

Run #1 Run #2	Initial Volume 930 mi	Final Volu 1.0 ml	ume				_
CAS No.	Compound		Result	RL	MDL	Units	Q
56-55-3	Benzo(a)anthra	cene	ND	0.054	0.025	ug/l	
50-32-8	Benzo(a)pyrene	:	ND	0.054	0.036	ug/l	
205-99-2	Benzo(b)fluorai	nthene	ND	0.11	0.047	ug/l	

0.11

0.11

0.11

0.036

0.028

0.039

ug/l

ug/l

ug/l

193-39-5 91-20-3 123-91-1	Indeno(1,2,3-cd)pyrene Naphthalene 1,4-Dioxane	ND ND ND	0.11 0.11 0.11	0.032 ι	16/l 16/l 18/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
4165-60-0	Nitrobenzene-d5	65%		24-125	%
321-60-8	2-Fluorobiphenyl	56%		19-127	%
1718-51-0	Terphenyl-d14	66%		10-119	%

ND

ND

ND

ND = Not detected RL = Reporting Limit

MDL = Method Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

By

XPL

Prep Date

n/a

Page 1 of 1

Client Sample ID: FB120716 Lab Sample ID:

JC33384-9

Matrix: Method:

Project:

Run #1

Run #2

AQ - Field Blank Water

SW846-8015C (DAI)

DF

1

BMSMC, Building 5 Area, PR

Date Sampled: 12/07/16

Date Received: 12/09/16

Percent Solids: n/a

	
Prep Batch	Analytical Batch
n/a	GGH5588

Low Molecular Alcohol List

File ID

GH107763.D

CAS No.	Compound	Compound Result RL		MDL	Units	
64-17-5	Ethanol	ND	200	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92 - 2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
111-27-3	Hexanol	126%		56-1	45%	
111-27-3	Hexanol	113%		56-1	45%	

Analyzed

12/14/16

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: FB120716 Lab Sample ID: JC33384-9

Matrix: AQ - Field Blank Water Method: Project:

SW846 8081B SW846 3510C BMSMC, Building 5 Area, PR Date Sampled: 12/07/16 Date Received: 12/09/16

Percent Solids: n/a

Q

Analytical Batch File ID DF Analyzed By **Prep Date Prep Batch** Run #1 8G1185.D CP OP99184 G8G42 12/15/16 12/13/16

Run #2

Final Volume **Initial Volume**

Run #1 980 ml 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin	ND	0.010	0.0062	ug/l
319-84-6	alpha-BHC	ND	0.010	0.0061	ug/l
319-85-7	beta-BHC	ND	0.010	0.0058	ug/l
319-86-8	delta-BHC	ND	0.010	0.0047	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0028	บg/โ
5103-71-9	alpha-Chlordane	ND	0.010	0.0047	ug/l
5103-74-2	gamma-Chlordane	ND	0.010	0.0047	ug/l
60-57-1	Dieldrin	ND	0.010	0.0037	ug/l
72-54-8	4,4'-DDD	ND	0.010	0.0039	ug/l
72-55-9	4,4'-DDE	ND	0.010	0.0063	ug/l
50-29-3	4,4'-DDT	ND	0.010	0.0051	ug/l
72-20-8	Endrin	ND	0.010	0.0051	ug/l
1031-07-8	Endosulfan sulfate	ND	0.010	0.0054	ug/l
7421-93-4	Endrin aldehyde	ND	0.010	0.0052	ug/l
53494-70-5	Endrin ketone	ND	0.010	0.0052	ug/l
959-98-8	Endosulfan-l	ND	0.010	0.0051	ug/l
33213-65-9	Endosulfan-II	ND	0.010	0.0044	ug/l
76-44-8	Heptachlor	ND	0.010	0.0039	ug/l
1024-57-3	Heptachlor epoxide	ND	0.010	0.0067	ug/l
72-43-5	Methoxychlor	ND	0.020	0.0058	ug/l
8001-35-2	Toxaphene	ND	0.26	0.19	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
877-09-8	Tetrachloro-m-xylene	85%	26-132%		
877-09-8	Tetrachloro-m-xylene	88%	26-132%		
2051-24-3	Decachlorobiphenyl	42%	10-118%		
2051-24-3	Decachlorobiphenyl	44%	10-118%		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Matrix Spike/Matrix Spike Duplicate Summary Job Number: JC33384

AMANYWP Anderson, Mulholland & Associates Account:

BMSMC, Building 5 Area, PR Project:

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
JC33384-6MS	4B67451.D	1	12/17/16	HT	n/a	n/a	V4B2774
JC33384-6MSD	4B67452.D	1	12/17/16	HT	n/a	n/a	V4B2774
JC33384-6	4B67442.D	1	12/17/16	HT	n/a	n/a	V4B2774
1							

The QC reported here applies to the following samples:

Method: SW846 8260C

JC33384-6

CAS No.	Compound	JC33384-6 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/I	MSD ug/l	MSD %	RPD	Limits Rec/RPD
106-99-0	1,3-Butadiene	ND	50	53.6	107	50	53.2	106	1	10-167/20
CAS No.	Surrogate Recoveries	MS	MSD	JC3	33384-6	Limits				
1868-53-7	Dibromofluoromethane	104%	102%	100	%	76-1209	⁄o			
17060-07-0	1,2-Dichloroethane-D4	106%	104%	107	%	73-1229	%		1000	
2037-26-5	Toluene-D8	100%	100%	100	%	84-1199	6		POPULA	0.
460-00-4	4-Bromofluorobenzene	101%	102%	107	%	78-1179	6	100		(E)

^{* =} Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC33384

Account: AMANYWP Anderson, Mulholland & Associates

Project: BMSMC, Building 5 Area, PR

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP99210-MS	M130030.D	1	12/15/16	KM	12/14/16	OP99210	EM5553
OP99210-MSD	M130031.D	1	12/15/16	KM	12/14/16	OP99210	EM5553
JC33384-6	M130035.D	1	12/16/16	KM	12/14/16	OP99210	EM5553

The QC reported here applies to the following samples:

JC33384-4, JC33384-5, JC33384-6, JC33384-7, JC33384-8, JC33384-9

		JC33384-6	Spike	MS	MS	Spike	MSD	MSD		Limits
CAS No.	Compound	ug/I Q	ug/I	ug/l	%	ug/l	ug/l	%	RPD	Rec/RPD
95-57-8	2-Chlorophenol	ND	51	33.8	66	53.2	37.6	71	11	49-110/20
59-50-7	4-Chloro-3-methyl phenol	ND	51	40.0	78	53.2	47.2	89	17	44-121/18
120-83-2	2,4-Dichlorophenol	ND	51	40.2	79	53.2	47.6	89	17	42-120/19
105-67-9	2,4-Dimethylphenol	ND	51	44.9	88	53.2	52.0	98	15	33-132/23
51-28-5	2,4-Dinitrophenol	ND	102	97.0	95	106	114	107	16	21-145/26
534-52-1	4,6-Dinitro-o-cresol	ND	51	47.5	93	53.2	56.5	106	17	25-134/27
95-48-7	2-Methylphenol	ND	51	34.4	67	53.2	36.2	68	5	47-112/18
	3&4-Methylphenol	ND	51	32.6	64	53.2	35.3	66	8	44-113/19
88-75-5	2-Nitrophenol	ND	51	39.6	78	53.2	47.0	88	17	45-118/20
100-02-7	4-Nitrophenol	ND	51	15.6	31	53.2	18.2	34	15	23-144/28
87-86-5	Pentachlorophenol	ND	51	50.4	99	53.2	59.1	111	16	25-151/25
108-95-2	Phenol	ND	51	22.4	44	53.2	24.5	46	9	22-100/22
58-90-2	2,3,4,6-Tetrachlorophenol	ND	51	45.9	90	53.2	52.8	99	14	44-122/21
95-95-4	2,4,5-Trichlorophenol	ND	51	42.4	83	53.2	49.2	92	15	51-124/20
88-06-2	2,4,6-Trichlorophenol	ND	51	45.1	88	53.2	50.5	95	11	53-120/21
83-32-9	Acenaphthene	ND	51	40.1	79	53.2	45.4	85	12	52-120/23
208-96-8	Acenaphthylene	ND	51	39.2	77	53.2	44.7	84	13	50-101/22
98-86-2	Acetophenone	ND	51	38.5	75	53.2	42.9	81	11	31-141/23
120-12-7	Anthracene	ND	51	40.3	79	53.2	49.0	92	19	54-117/22
1912-24-9	Atrazine	ND	51	52.2	102	53.2	61.5	116	16	42-152/23
100-52-7	Benzaldehyde	ND	51	31.6	62	53.2	36.5	69	14	10-164/30
56-55-3	Benzo(a)anthracene	ND	51	41.3	81	53.2	49.6	93	18	40-123/24
50-32-8	Benzo(a)pyrene	ND	51	37.7	74	53.2	45.5	86	19	41-127/25
205-99-2	Benzo(b)fluoranthene	ND	51	37.9	74	53.2	45.7	86	19	39-127/27
191-24-2	Benzo(g,h,i)perylene	ND	51	39.4	77	53.2	49.1	92	22	34-128/28
207-08-9	Benzo(k)fluoranthene	ND	51	41.1	81	53.2	48.5	91	17	39-122/26
101-55-3	4-Bromophenyl phenyl ether	ND	51	45.8	90	53.2	55.4	104	19	51-124/23
85-68-7	Butyl benzyl phthalate	ND	51	31.9	63	53.2	38.8	73	20	21-146/28
92-52-4	1,1'-Biphenyl	ND	51	40.5	79	53.2	46.3	87	13	27-142/23
91-58-7	2-Chloronaphthalene	ND	51	42.8	84	53.2	47.5	89	10	51-109/23
106-47-8	4-Chloroaniline	ND	51	23.8	47	53.2	30.2	57	24	10-110/55
86-74-8	Carbazole	ND	51	41.0	80	53.2	40.0	0.4	20	52-116/22
105-60-2	Caprolactam	ND	51	14.2	28	53.2	16.4	-31:	14	10-106/34
218-01-9	Chrysene	ND	51	41.2	81	53.2	49.4	ocheo,	218	41-128/24
111-91-1	bis(2-Chloroethoxy)methane	ND	51	51.0	100	53.2	5885	110	2	46-120/24
111-44-4	bis(2-Chloroethyl)ether	ND	51	51.5	101	53.2	57.3	uel Infan		42-123/28
		- · -				1		uel infini	12 S	

^{* =} Outside of Control Limits.

Page 1 of 3

Method: SW846 8270D

Page 2 of 3

Method: SW846 8270D

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC33384

AMANYWP Anderson, Mulhoiland & Associates Account:

Project: BMSMC, Building 5 Area, PR

l6 OP99210 EM5553
16 OP99210 EM5553
16 OP99210 EM5553

The QC reported here applies to the following samples:

JC33384-4, JC33384-5, JC33384-6, JC33384-7, JC33384-8, JC33384-9

CAS No.	Compound	JC33384-6		MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
	•		. 0	, and		Ģ				
108-60-1	bis(2-Chloroisopropyl)ether	ND	51	37.9	74	53.2	41.9	79	10	41-117/25
7005-72-3	4-Chlorophenyl phenyl ether	ND	51	46.4	91	53.2	52.5	99	12	48-121/21
121-14-2	2,4-Dinitrotoluene	ND	51	44.5	87	53.2	52.8	99	17	54-123/27
606-20-2	2,6-Dinitrotoluene	ND	51	44.0	86	53.2	52.9	99	18	55-125/26
91-94-1	3,3'-Dichlorobenzidine	ND	102	40.9	40	106	56.1	53	31	10-107/47
53-70-3	Dibenzo(a,h)anthracene	ND	51	40.1	79	53.2	49.8	94	22	35-130/27
132-64-9	Dibenzofuran	ND	51	41.8	82	53.2	49.0	92	16	53-112/22
84-74-2	Di-n-butyl phthalate	ND	51	36.1	71	53.2	44.0	83	20	38-129/23
117-84-0	Di-n-octyl phthalate	ND	51	32.7	64	53.2	38.2	72	16	35-145/26
84-66-2	Diethyl phthalate	ND	51	38.1	75	53.2	44.2	83	15	16-136/30
131-11-3	Dimethyl phthalate	ND	51	42.5	83	53.2	48.1	90	12	10-143/39
117-81-7	bis(2-Ethylhexyl)phthalate	ND	51	33.1	65	53.2	39.1	74	17	34-141/28
206-44-0	Fluoranthene	ND	51	44.4	87	53.2	52.6	99	17	47-123/24
86-73-7	Fluorene	ND	51	40.8	80	53.2	46.8	88	14	56-117/22
118-74-1	Hexachlorobenzene	ND	51	44.1	86	53.2	51.3	96	15	46-125/24
87-68-3	Hexachlorobutadiene	ND	51	38.1	75	53.2	43.9	83	14	26-121/24
77-47-4	Hexachlorocyclopentadiene	ND	102	46.5	46	106	55.3	52	17	10-133/31
67-72-1	Hexachloroethane	ND	51	37.0	73	53.2	42.2	79	13	35-111/26
193-39-5	Indeno(1,2,3-cd)pyrene	ND	51	39.7	78	53.2	51.0	96	25	32-130/30
78-59-1	Isophorone	ND	51	43.7	86	53.2	49.1	92	12	47-126/23
90-12-0	1-Methylnaphthalene	ND	51	38.1	75	53.2	44.2	83	15	34-124/25
91-57-6	2-Methylnaphthalene	ND	51	38.9	76	53.2	45.1	85	15	34-123/24
88-74-4	2-Nitroaniline	ND	51	43.1	84	53.2	48.5	91	12	46-137/23
99-09-2	3-Nitroaniline	ND	51	26.8	53	53.2	33.8	64	23	10-110/50
100-01-6	4-Nitroaniline	ND	51	43.3	85	53.2	47.6	89	9	38-118/25
98-95-3	Nitrobenzene	ND	51	43.6	85	53.2	47.8	90	9	35-130/25
621-64-7	N-Nitroso-di-n-propylamine	ND	51	38.2	75	53.2	42.6	80	11	45-123/22
86-30-6	N-Nitrosodiphenylamine	ND	51	38.1	75	53.2	46.1	87	19	46-123/24
85-01-8	Phenanthrene	ND	51	44.3	87	53.2	53.4	100	19	48-121/23
129-00-0	Pyrene	ND	51	40.7	80	53.2	49.0	92	19	43-124/26
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	51	47.7	93	53.2	53.2	100	11	25-142/24
	-,-, -,-							-	OCHOO	
								ak N	Name of	
CAS No.	Surrogate Recoveries	MS	MSD	JC	33384-6	Limits		1		**
	-						/	3	tael Infa	#\B\
367-12-4	2-Fluorophenol	59%	62%	529	%	14-88%	- 1		Méndez	夏
							/	4 355 40 mm	(= 188	8 /8/

^{* =} Outside of Control Limits.

Page 3 of 3

Matrix Spike/Matrix Spike Duplicate Summary Job Number: JC33384

Account: AMANYWP Anderson, Mulholland & Associates

Project: BMSMC, Building 5 Area, PR

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP99210-MS	M130030.D	1	12/15/16	KM	12/14/16	OP99210	EM5553
OP99210-MSD	M130031.D	1	12/15/16	KM	12/14/16	OP99210	EM5553
JC33384-6	M130035.D	1	12/16/16	KM	12/14/16	OP99210	EM5553

The QC reported here applies to the following samples:

JC33384-4, JC33384-5, JC33384-6, JC33384-7, JC33384-8, JC33384-9

CAS No.	Surrogate Recoveries	MS	MSD	JC33384-6	Limits
4165-62-2	Phenol-d5	41%	44%	36%	10-110%
118-79-6	2,4,6-Tribromophenol	91%	109%	92%	39-149%
4165-60-0	Nitrobenzene-d5	84%	95%	86%	32-128%
321-60-8	2-Fluorobiphenyl	85%	93%	83%	35-119%
1718-51-0	Terphenyl-d14	70%	82%	67%	10-126%

Method: SW846 8270D

^{* =} Outside of Control Limits.

Page 1 of 1

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC33384

Account:

AMANYWP Anderson, Mulholland & Associates

Project: BMSMC, Building 5 Area, PR

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP99210A-MS	4P20205.D	1	12/15/16	JĴ	12/14/16	OP99210A	E4P1098
OP99210A-MSD	4P20206.D	1	12/15/16	JJ	12/14/16	OP99210A	E4P1098
JC33384-6	4P20218.D	1	12/16/16	JJ	12/14/16	OP99210A	E4P1098
303304-0	71 20210.15	•	12/10/10	33	12/14/10	01772104	E41 1076

The QC reported here applies to the following samples:

JC33384-4, JC33384-5, JC33384-6, JC33384-7, JC33384-8, JC33384-9

CAS No.	Compound	JC33384-6	Spike	MS	MS %	Spike	MSD	MSD %	RPD	Limits Rec/RPD
CAS No.	Compound	ug/l Q	ug/l	ug/l	70	ug/i	ug/l	70	Krb	Rec/ RFD
56-55-3	Benzo(a)anthracene	ND	1.05	0.924	88	1.08	1.06	99	14	25-135/33
50-32-8	Benzo(a)pyrene	ND	1.05	0.640	61	1.08	0.745	69	15	10-116/38
205-99-2	Benzo(b)fluoranthene	ND	1.05	0.840	80	1.08	0.910	85	8	10-131/40
207-08-9	Benzo(k)fluoranthene	ND	1.05	0.741	70	1.08	1.03	96	33	10-120/45
218-01-9	Chrysene	ND	1.05	0.775	74	1.08	0.901	84	15	31-125/33
53-70-3	Dibenzo(a,h)anthracene	ND	1.05	0.452	43	1.08	0.609	57	30	10-116/48
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.05	0.552	52	1.08	0.744	69	30	10-116/48
91-20-3	Naphthalene	ND	1.05	0.715	68	1.08	0.828	77	15	23-140/36
123-91-1	1,4-Dioxane	0.746	1.05	1.84	104	1.08	1.85	103	1	20-160/30

CAS No.	Surrogate Recoveries	MS	MSD	JC33384-6	Limits
367-12-4	2-Fluorophenol	44%	54%		14-81%
4165-62-2	Phenol-d5	32%	38%		11-54%
118-79-6	2,4,6-Tribromophenol	83%	90%		35-145%
4165-60-0	Nitrobenzene-d5	82%	92%	86%	24-125%
321-60-8	2-Fluorobiphenyl	51%	56%	60%	19-127%
1718-51-0	Terphenyl-d14	52%	64%	76%	10-119%

Method: SW846 8270D BY SIM

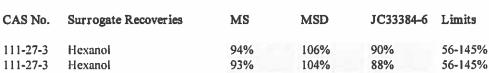
^{* =} Outside of Control Limits.

Page 1 of I

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC33384

Account: AMANYWP Anderson, Mulholland & Associates


BMSMC, Building 5 Area, PR Project:

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
JC33384-6MS	GH107752.D	1	12/14/16	XPL	n/a	n/a	GGH5588
JC33384-6MSD	GH107753.D	1	12/14/16	XPL	n/a	n/a	GGH5588
JC33384-6	GH107751.D	1	12/14/16	XPL	n/a	n/a	GGH5588
		i	733 - 133		92		

The QC reported here applies to the following samples:

JC33384-1, JC33384-2, JC33384-3, JC33384-4, JC33384-5, JC33384-6, JC33384-7, JC33384-8, JC33384-9

CAS No.	Compound	JC33384-6 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
64-17-5	Ethanol	ND	5000	4910	98	5000	4960	99	1	58-145/27
78-83-1	Isobutyl Alcohol	ND	5000	5490	110	5000	5350	107	3	69-131/25
67-63-0	Isopropyl Alcohol	ND	5000	5850	117	5000	4450	89	27	70-133/28
71-23-8	n-Propyl Alcohol	ND	5000	5390	108	5000	5720	114	6	66-137/29
71-36-3	n-Butyl Alcohol	ND	5000	5890	118	5000	6080	122	3	63-131/25
78-92-2	sec-Butyl Alcohol	ND	5000	6510	130	5000	5180	104	23	64-136/25
67-56-1	Methanol	ND	5000	4260	85	5000	4550	91	7	48-148/34
									DEMOO	Ae.

Method: SW846-8015C (DAI)

^{* =} Outside of Control Limits.

Page 1 of 1

Method: SW846 8081B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC33384

Account: AMANYWP Anderson, Mulholland & Associates

Project: BMSMC, Building 5 Area, PR

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
OP99184-MS	8G1181.D	1	12/15/16	CP	12/13/16	OP99184	G8G42
OP99184-MSD	8G1182.D	1	12/15/16	CP	12/13/16	OP99184	G8G42
JC33384-6	8G1180.D	1	12/15/16	CP	12/13/16	OP99184	G8G42

The QC reported here applies to the following samples:

JC33384-4, JC33384-5, JC33384-6, JC33384-7, JC33384-8, JC33384-9

		JC33384-6		84-6 Spike		MS MS		MSD	MSD		Limits
CAS No.	Compound	ug/l	Q	ug/l	ug/l	%	ug/l	ug/l	9/0	RPD	Rec/RPD
309-00-2	Aldrin	ND		0.255	0.26	102	0.255	0.23	90	12	37-159/40
319-84-6	alpha-BHC	ND		0.255	0.27	103	0.255	0.25	98	8	37-164/37
319-85-7	beta-BHC	ND		0.255	0.28	110	0.255	0.26	102	7	46-151/36
319-86-8	delta-BHC	ND		0.255	0.29	114	0.255	0.27	106	7	32-168/36
58-89-9	gamma-BHC (Lindane)	ND		0.255	0.28	110	0.255	0.25	98	11	44-160/37
5103-71-9	alpha-Chlordane	ND		0.255	0.30	118	0.255	0.27	106	11	38-160/35
5103-74-2	gamma-Chlordane	ND		0.255	0.28	110	0.255	0.25	98	11	39-157/37
60-57-1	Dieldrin	ND		0.255	0.29	114	0.255	0.26	102	11	42-161/36
72-54-8	4,4'-DDD	ND		0.255	0.29	114	0.255	0.25	98	15	40-161/36
72-55-9	4,4'-DDE	ND		0.255	0.27	106	0.255	0.24	94	12	34-158/36
50-29-3	4,4'-DDT	ND		0.255	0.25	98	0.255	0.24	94	4	41-173/33
72-20-8	Endrin	ND		0.255	0.31	122	0.255	0.28	110	10	44-166/35
1031-07-8	Endosulfan sulfate	ND		0.255	0.28	110	0.255	0.26	102	7	46-161/36
7421-93-4	Endrin aldehyde	ND		0.255	0.32	126	0.255	0.28	110	13	34-149/36
53494-70-5	Endrin ketone	ND		0.255	0.29	114	0.255	0.26	102	11	44-157/36
959-98-8	Endosulfan-I	ND		0.255	0.29	114	0.255	0.26	102	11	43-154/35
33213-65-9	Endosulfan-II	ND		0.255	0.29	114	0.255	0.26	102	11	40-162/35
76-44-8	Heptachlor	ND		0.255	0.26	102	0.255	0.24	94	8	33-153/37
1024-57-3	Heptachlor epoxide	ND		0.255	0.28	110	0.255	0.25	98	11	45-154/37
72-43-5	Methoxychlor	ND		0.255	0.26	102	0.255	0.25	98	4	48-169/32
8001-35-2	Toxaphene	ND			ND			ND		nc	50-150/30

CAS No.	Surrogate Recoveries	MS	MSD	JC33384-6	Limits
877-09-8	Tetrachloro-m-xylene	88%	82%	81%	26-132%
877-09-8	Tetrachloro-m-xylene	91%	85%	85%	26-132%
2051-24-3	Decachlorobiphenyl	85%	80%	95%	10-118%
2051-24-3	Decachlorobiphenyl	83%	79%	96%	10-118%

^{* =} Outside of Control Limits.

																							иV
-MJ	GB FB		2233 Ro EL. 732-324	nate 130, -0200 f	Daylori. AX 73 culest co	M) DE81	0 0	BÙ		(94.23.4		6CS	Ex Tracks	ucite P			57	callio Orto	pe Control days July 8	5	c 33		1/6
or I Provide Information	INTERNAL DESIGNATION OF THE PARTY OF THE PAR	100	Project	ntormat	ion -		2.	3	28.1	CINC.	Strange on	+	1					Ĕ		_			- 1
Client / Reporting Information.	Fragetz Name													1	H		- 1	CHRY, DBANTH.	- 1	- 1	- 1	GW Ground V	Jales Jales
Company Name	1	_		. w . 101 a II	-								- 1		1 1			g	- 1			WW Water	r 1
Anderson Mutholland & Associates	4th Q 2016 Gr	oundwater Sam	pling - On		44.01.95	The same	1141		4.5	er selbet	*	4	- 1	1	1 1) i		8	ξ	- 1		SW Surface V SØ Son	Jales
Scient Address	Street			dillion le	elormatio	n ()I' differ	rgest de	оги Мај	ort to			_	- 1					뚳닭	BELOW		-1	St. Shulge	
2700 Westchester Avenue, Suite 417	Cri		State	Company	Name								1	1	1	1		윤희	20		1	SED-Seams Ol-Oil	"
City Street	1		PR	1								4		1			l	盖里	SEE NOTE	- 1	- 1	LtQ - Other Lt	aue l
PURCHASE	Project P			Street Ad	Idree4							1	1		1	1 1	Į	ᇎ빝	ž	į	- 1	SOL Other S	DWG
Province Consect	T Today 5											-	- 1		1 '	1		필위	iii ii			WP W/pr	ı j
Terry Taylor Fax 8	Chart Purchase C	Your #		City			5	late		- 2	P	-1	1		۱.,			울出	2	- 1		FB Field Blu EB Equipment	
Phone #]											-	برا	1	8	1		무위	E	- 1		FIB- Kinse D	ank
914-251-0400 Phone F	Project Manager			Abenicin									. []		3	9	🕏	5 3	黃十	- 1	- 1	TB-Trip Dia	100
Sumple(a) Name(s)	Terry Taylor									erved In	office.	-13	DAGISLMA	18	B827051M14DiOX	BMS+MNAP	BMS+2MNAP	BSUM·BANTH, BAP, BBF, BKF, CH INDPYR, NAP (SEE NOTE BELOW)	CHEMISTRY		- 1		_
	11117 12 72		Gattes that		Į		⊢	Number			Tel	٦.	DBOISLEAU	AB82705	18	15	÷.	<u> </u>	H	ĺ		1	
		[]		Santanial .	ĺ		_ a	5 S	1020 1020 1030 1030 1030 1030 1030 1030	ZI The	5 8	- 13	8 8	1 9	1 8	M	8	SE SE	WET	- 1	- 1	LAB LISE O	NLY
sos summir Field ID / Point of Collection	MECHADI VINI P	Deta	Time	87	Shaken .	S of botton	₹.	2 E	äΪĀ	ā i	<u> </u>	_						./	-			E72	
		(1/	1023		EB	6	2		-13			-13	XX	14	LX.	X	X.	<u></u>					_
EB 120616		12-6-16		1.10		41	-	21	1 3		$\neg \neg$	\neg	×Υ	ïΚ	ĪΥ	IX.	K	X	IXI	L		V780	<u>, </u>
2 UP-2		12-6-16	1534		QM	45	100	니			-1-1	_	<u> </u>		忟	X	X	Y				A33	
		12-10-16	1620	INR.	FB	6	3	44	_ 3	\rightarrow		_		10	100	1/2	10	()	1	\dashv		651	
		12-7-11	1006	R5	EB	6	13		13	3			$\lambda \perp \lambda$	JĂ	$\perp X$	$\perp \Delta$	12	<u> </u>	┝	-			_
4 FR 120716		12 1-10	1246	R5	GW	6	3		13		77	i l'	XIS		ΙV	ΙX	IX.	X.	1_1			MID	
5 5 - 40D		12-7-16		$\frac{1}{1}$	OW.			- -	1						TV	14	ľ	W			_)	Į.	
C-AID		17-7-6	1243	INK	KJW	10	3	-			+	Η,	$\Delta 12$	4.5	+6	++	ΗŽ	-		\neg		-	
6/ 6-41D MS		17-1-16	107	INR	GW	6	3	_ _	_[]				\times \mid \times	<u> </u>	1/2	1.9	16	1.	-			-1	
		12-7-16	1331	INIR	GW	6	7	_ [13	al I		11.	ХIУ	(X	<u>, X</u>	LX.	12	1					
S-410 MSD		12-7-16		Ŕς	-	13	-	zli	16	1		П	XX	$\square \vee$. X	JX	火	X	$ \mathbf{X} $				
7 5-405		12-7-16	1550	-113-6	CM	-	+**	- 1			- -	H.	2 2	7 0	12		×	TX	V				
8 5-415		12-7-16	1656	INK	<u>161</u>	13	13	21	110	4-4	-	1	<u>S 17</u>		-1.5	13	10	10	10			_	
-0.00		17-7-16	1525	RS	FP	6	3			3			$\Delta \Box$	SIX	12	7	$\perp \triangle$	<u> </u>	-				
9 65120/16		12-1-2	1.7	1,			П		\Box		T	iΙ	-1.	-1.			l						
	principo. 1	Service Land	ا سلم ا	i Later	3	Dok	a Dee	ver abid	Infort	nation		I.	V MAY TO	2.9792	AT LEEK	ALC: U	Can	MUDOUN.	# Брагы	n pianging	invest =	47 147 14 1	-
Turnaround Time (Rusiness days)		Asculest PM): / Date:			Comme	clai "A" (Level	1)		NY	ASP C	91000	ry A	WE	TCHE	MISTR	Y INC	LUDE	S ALK.	XFE3,	MN, VRS	K175CH4, XN	mau,
	Williams at the	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Comme	cial "B" (Level	2)	Ε	_	ASP C	_	ry O	30	4, AND	15	_		_			- CHINGS IN	_
E Std. 16 Strainean Days					PULLT1	(Level 3	+4]				ate For			BA	NTHOE	ENZO	(A)AN	THRA	CENE,	BAPet	IENZO(A	JPYRENE, JFLUROANTH	ENE
S Day RUSH	INITIAL ASES	SMENT 7A	DOW		NJ Redu				- 5	= "	B For	mat			mu_er	HOWKE	MIE D	DANT	напіві	יום צאי	L HIAN LT	IKALENE.	
2 Day RUSH					Comme			- fam. Bla		_	100		-	INC	PYR=	INDEN	0(1,2,	3-CD)	PYREN	E, NAP	-NAPH1	HALENE	
1 Day RUSH	LABEL-VERIF	ICATION	V_		ACJ ELIN	Results C	rei Lijidd Yesha C	rospensor.	2001 "(9" 2001 "(9"	+ Flori	—ne uba∗C	C Sur	mmany										
other							C 5. m	nemery s	Parket	Aaw c	tata			_Sa	mple is	nvento	ITY IS V	/enfig	d upon	receip	in the L	aboratory	
Emergipcy & Rush T/A date available VIA Lables		ample Custody m	oust be door	Nu Ne	pelow ex	ch lime i	remb.	les chi	nge p	08541	pion,	includ	ding cau	ser dell	very.			270	distant	No. of Lot	y h		_
La Nove I and A Company		Becomed By:	C./				100	-	Byl	1	N				(140a	9/16	1 2 Z) Recor	red By:	\sim			
12 FURN 12	-8-16 BOD	1 FeV	EX				2				4_					1004							
Ret founded by Lamptor Deta TH	w:	Respected By					4											4				olor Irms.	<u> </u>
3 Date Tim	91	Racowood By:					Cus		14 B. A	2.61	0621		Manufacti Manufacti	Pres	THE COL	2	cando		U	On ke	2		1.4
		15												_	_	<u> </u>							

JC33384: Chain of Custody Page 1 of 3

EXECUTIVE NARRATIVE

SDG No:

JC33384

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8260C

Number of Samples:

10

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

Ten (10) samples were analyzed for selected VOAs of the TCL list (1,3-butadiene) by method SW846-8260C. Samples were validated following USEPA Hazardous Waste Support Section SOP No. HW-33A Revision 0 SOM02.2. Low/Medium Volatile Data Validation. July, 2015. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

None

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

January 12, 2017

Date:

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC33384-1

Sample location: BMSMC Building 5 Area

Sampling date: 6-Dec-16

Matrix: AQ - Equipment Blank

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes

Sample ID: JC33384-2

Sample location: BMSMC Building 5 Area

Sampling date: 6-Dec-16

Matrix: Groundwater

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes

Sample ID: JC33384-3

Sample location: BMSMC Building 5 Area

Sampling date: 6-Dec-16

Matrix: AQ - Field Blank Water

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes

Sample ID: JC33384-4

Sample location: BMSMC Building 5 Area

Sampling date: 7-Dec-16

Matrix: AQ - Equipment Blank

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes

Sample ID: JC33384-6

Sample location: BMSMC Building 5 Area

Sampling date:

7-Dec-16

Matrix: Groundwater

METHOD: 8260C

Analyte Name

, . . Y

Result

Units Dilution Factor

Lab Flag Validation

Reportable

1,3-butadiene

5.0

ug/l

1

Yes

Sample ID: JC33384-7

Sample location: BMSMC Building 5 Area

Sampling date:

7-Dec-16

Matrix: Groundwater

METHOD: 8260C

Analyte Name

1,3-butadiene

Result 5.0

Units Dilution Factor

1

Lab Flag Validation Reportable

U Yes

Sample ID: JC33384-8

Sample location: BMSMC Building 5 Area

Sampling date:

7-Dec-16

Matrix: Groundwater

METHOD: 8260C

Analyte Name

Result

Units Dilution Factor

Lab Flag Validation

Reportable

1,3-butadiene

5.0

ug/l

ug/l

1

U

Yes

Sample ID: JC33384-9

Sample location: BMSMC Building 5 Area

Sampling date:

7-Dec-16

Matrix: AQ - Field Blank Water

METHOD: 8260C

Analyte Name

Result

Units Dilution Factor

Lab Flag Validation

Reportable

1,3-butadiene

5.0

ug/l

1

U

Yes

Sample ID: JC33384-6MS

Sample location: BMSMC Building 5 Area

Sampling date: 7-Dec-16

...7

Matrix: Groundwater

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 53.6 ug/l 1 - U Yes

Sample ID: JC33384-6MSD

Sample location: BMSMC Building 5 Area

Sampling date: 7-Dec-16

Matrix: Groundwater

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 53.2 ug/l 1 - U Yes

Reviewer: / Wau Date: January 12, 2017

	Project Number:_JC33384 Date:December_06-07,_2016
	Shipping date:December_08,_2016 EPA Region:2
REVIEW OF VOLATILE (Low/Medium Volatile	
The following guidelines for evaluating volatile organizations. This document will assist the reviewer informed decision and in better serving the need assessed according to USEPA data validation governed by the complete serving the need assessed according to USEPA data validation governed by the complete serving the need assessed according to USEPA data validation governed by the complete serving the serving serving serving the need according to USEPA data validation. July, 2018 listed on the data review worksheets are from the noted.	in using professional judgment to make more s of the data users. The sample results were guidance documents in the following order of section SOP No. HW-33A Revision 0 SOM02.2. 5. The QC criteria and data validation actions
The hardcopied (laboratory name)Accutest been reviewed and the quality control and performant included:	data package received has nce data summarized. The data review for VOCs
Lab. Project/SDG No.:JC33384	9
X Data CompletenessX Holding TimesX GC/MS TuningX Internal Standard PerformanceX BlanksX Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate _OverallComments:Selected_VOA_(1,3-Butadients)	X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits ne)_from_the_TCL_list_(SW846_8260C)
Definition of Qualifiers:	
J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated mondetect	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
_ 1		
	4	
-		
21 - 22 - 22	^	
		SEE - 2
		W.
		*
	N1-11	

All criteria were met_	X_	
Criteria were not met		
and/or see below	_	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
				28.8 (32
A 44 1 1 1	1 111 1 11 1	1 11 11 11		
All samples analy	zed within method red	commended holding tim	e. Samp	les properly preserved.
All samples analy	zed within method red	commended holding tim	e. Samp	les properly preserved.
All samples analy	zed within method red	commended holding tim	e. Samp	les properly preserved.

Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4 \pm 2°C), no air bubbles.

Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles.

Soil samples- 14 days from sample collection.

Cooler temperature (Criteria: 4 ± 2 °C): 5.2° C - OK

Actions

Aqueous samples

- a. If there is no evidence that the samples were properly preserved (pH < 2, $T = 4^{\circ}C \pm 2^{\circ}C$), but the samples were analyzed within the technical holding time [7 days from sample collection], no qualification of the data is necessary.
- b. If there is no evidence that the samples were properly preserved, and the samples were analyzed outside of the technical holding time [7 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as unusable (R).
- c. If the samples were properly preserved, and the samples were analyzed within the technical holding time [14 days from sample collection], no qualification of the data is necessary.
- d. If the samples were properly preserved, but were analyzed outside of the technical holding time [14 days from sample collection], qualify detects as estimated (J) and non-detects as unusable (R).
- e. If air bubbles were present in the sample vial used for analysis, qualify detected compounds as estimated (UJ) and non-detected compounds as estimated (UJ).

Non-aqueous samples

a. If there is no evidence that the samples were properly preserved (T < -7°C or T = 4°C \pm 2°C and preserved with NaHSO₄), but the samples were analyzed within the technical holding time [14 days

from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as (UJ) or unusable (R) using professional judgment.

- b. If the samples were properly preserved, and the samples were analyzed within the technical holding time [14 days from sample collection], no qualification of the data is necessary.
- c. If there is no evidence that the samples were properly preserved, and the samples were analyzed outside of the technical holding time [14 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as unusable (R).
- d. If the samples were properly preserved, but were analyzed outside of the technical holding time [14 days from sample collection], qualify detects as estimated (J) and non-detects as unusable (R).

Qualify TCLP/SPLP samples

- a. If the TCLP/SPLP ZHE procedure is performed within the extraction technical holding time of 14 days, detects and non-detects should not be qualified.
- b. If the TCLP/SPLP ZHE procedure is performed outside the extraction technical holding time of 14 days, qualify detects as estimated (J) and non-detects as unusable (R).
- c. If TCLP/SPLP aqueous samples and TCLP/SPLP leachate samples are analyzed within the technical holding time of 7 days, detects and non-detects should not be qualified.
- d. If TCLP/SPLP aqueous samples and TCLP/SPLP leachate samples are analyzed outside of the technical holding time of 7 days, qualify detects as estimated (J) and non-detects as unusable (R).

Table 1. Holding Time Actions for Low/Medium Volatile Analyses - Summary

			Action					
Matrix	Preserved	Criteria	Detected Associated Compounds	Non-Detected Associated Compounds				
	No	≤ 7 days	No qu	ıalification				
Aguagus	No	> 7 days	J	R				
Aqueous	Yes	≤ 14 days	No qu	alification				
	Yes	> 14 days	J	R				
Non Acuana	No	≤ 14 days	J	Professional judgment, UJ or R				
Non-Aqueous	Yes	≤ 14 days	No qu	ualification				
	Yes/No	> 14 days	J	R				
TCLP/SPLP	Yes	≤ 14 days	No qu	alification				
TCLP/SPLP	No	> 14 days	J	R				

TCLP/SPLP	ZHE performed within the 14-day technical holding time	No qu	alification	
TCLP/SPLP	ZHE performed outside the 14-day technical holding time	J	R	
TCLP/SPLP aqueous & TCLP/SPLP leachate	Analyzed within 7 days	No qu	alification	
TCLP/SPLP aqueous & TCLP/SPLP leachate	Analyzed outside 7 days	J	R	
Sample temperature outside 4°C ± 2°C upon receipt at the laboratory		Use professional judgment		
Holding times g	rossly exceeded	J	R	

All criteria were metX_	
Criteria were not met see below	

GC/MS TUNING

The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits

__X___The BFB performance results were reviewed and found to be within the specified criteria.

__X___BFB tuning was performed for every 12 hours of sample analysis.

NOTES: All mass spectrometer instrument conditions must be identical to those used during the sample analysis. Background subtraction actions resulting in spectral distortions for the sole purpose of meeting the method specifications are contrary to the Quality Assurance (QA) objectives, and are therefore unacceptable.

NOTES: No data should be qualified based on BFB failure. Instances of this should be noted in the narrative.

All ion abundance ratios must be normalized to m/z 95, the nominal base peak, even though the ion abundance of m/z 174 may be up to 120% that of m/z 95.

Actions:

If samples are analyzed without a preceding valid instrument performance check, qualify all data in those samples as unusable (R).

If ion abundance criteria are not met, professional judgment may be applied to determine to what extent the data may be utilized. When applying professional judgment to this topic, the most important factors to consider are the empirical results that are relatively insensitive to location on the chromatographic profile and the type of instrumentation. Therefore, the critical ion abundance criteria for BFB are the m/z 95/96, 174/384, 174/176, and 176/177 ratios. The relative abundances of m/z 50 and 75 are of lower importance. This issue is more critical for Tentatively Identified Compounds (TICs) than for target analytes.

Note: State in the Data Review Narrative, decisions to use analytical data associated with BFB instrument performance checks not meeting contract requirements.

Note: Verify that that instrument instrument performance check criteria were achieved using techniques described in Low/Medium Volatiles Organic Analysis, Section II.D.5 of the SOM02.2 NFG, obtain additional information on the instrument performance checks. Make sure that background subtraction was performed from the BFB peak and not from background subtracting from the solvent front or from another region of the chromatogram.

List	the	samples	affected
	410	Samples	
	w.		

All criteria were met _	X_	
Criteria were not met		
and/or see below		9

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:12/08/16_	
Dates of continuing (initial) calibration:	_12/08/16
Dates of continuing calibration:	_12/17/16;_12/18/16
Dates of ending calibration:	75
Instrument ID numbers:	GCMS4B
Matrix/Level:	Aqueous/low

DATE	LAB ID#	FILE	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED
]				

Note: Initial calibration, initial calibration verification, and continuing calibration verification within the method and validation guidance document required performance criteria. Closing calibration check verification not included in data package. No action taken, professional judgment.

Criteria

The analyte calibration criteria in the following Table must be obtained. Analytes not meeting the criteria are qualified.

A separate worksheet should be filled for each initial curve

Initial Calibration - Table 2. RRF, %RSD, and %D Acceptance Criteria for Initial Calibration and CCV for Low/Medium Volatile Analysis

Analyte	Minimum	Maximum	Opening	Closing
	RRF	%RSD	Maximum %D1	Maximum %D
Dichlorodifluoromethane	0.010	25.0	±40.0	±50.0
Chloromethane	0.010	20.0	±30.0	±50.0
Vinyl chloride	0.010	20.0	±25.0	±50.0
Bromomethane	0.010	40.0	±30.0	±50.0
Chloroethaue	0.010	40.0	±25.0	±50.0
Trichlorofluoromethane	0.010	40.0	±30.0	±50.0
1.1-Dichloroethene	0.060	20.0	±20.0	±25.0
1,1.2-Trichloro-1,2.2-trifluoroethane	0.050	25.0	±25.0	±50.0
Acetone	0.010	40.0	±40.0	±50.0
Carbon disulfide	0.100	20.0	±25.0	±25.0
Methyl acetate	0.010	40.0	±40.0	±50.0
Methylene chloride	0.010	40.0	±30.0	±50.0
trans-1,2-Dichloroethene	0.100	20.0	±20.0	±25.0
Methyl tert-butyl ether	0.100	40.0	±25.0	±50.0
1,1-Dichloroethane	0.300	20.0	±20.0	±25.0
cis-1.2-Dichloroethene	0.200	20.0	±20.0	±25.0
2-Butanone	0.010	40.0	±40.0	±50.0
Bromochloromethane	0.100	20.0	±20.0	±25.0
Chloroform	0.300	20.0	±20.0	±25.0
1.1.1-Trichloroethane	0.050	20.0	±25.0	±25.0
Cyclohexane	0.010	40.0	±25.0	±50.0
Carbon tetrachloride	0.100	20.0	±25.0	±25.0
Benzene	0.200	20.0	±20.0	±25.0
1,2-Dichloroethane	0.070	20.0	±20.0	±25.0
Trichloroethene	0.200	20.0	±20.0	±25.0
Methylcyclohexane	0.050	40.0	±25.0	±50.0
1,2-Dichloropropane	0.200	20.0	±20.0	±25.0
Bromodichloromethane	0.300	20.0	±20.0	±25.0
cis-1,3-Dichloropropene	0.300	20.0	±20.0	±25.0
4-Methyl-2-pentanone	0.030	25.0	±30.0	±50.0
Toluene	0.300	20.0	±20.0	±25.0
trans-1,3-Dichloropropene	0.200	20.0	±20.0	±25.0
1.1.2-Trichloroethane	0.200	20.0	±20.0	±25.0
Tetrachloroethene	0.100	20.0	±20.0	±25.0
2-Hexanone	0.010	40.0	±40.0	±50.0
Dibromochloromethane	0.200	20.0	±20.0	±25.0
1.2-Dibromoethane	0.200	20.0	±20.0	±25.0
Chlorobenzene	0.400	20.0	±20.0	±25.0
Ethylbenzene	0.400	20.0	±20.0	±25.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Closing Maximum
m.p-Xylene	0,200	20.0	±20.0	±25.0
o-Xylene	0.200	20.0	±20.0	±25.0
Styrene	0.200	20.0	±20.0	±25.0
Bromoform	0.100	20.0	±25.0	±50.0
Isopropylbenzene	0.400	20.0	±25.0	±25.0
1.1.2.2-Tetrachloroethane	0.200	20.0	±25.0	±25.0
1.3-Dichlorobenzene	0.500	20.0	±20.0	±25.0
1.4-Dichlorobenzene	0.600	20.0	±20.0	±25.0
1,2-Dichlorobenzene	0.600	20.0	±20.0	±25.0
1.2-Dibromo-3-chloropropane	0.010	25.0	±30.0	±50.0
1.2,4-Trichlorobenzene	0.400	20.0	±30.0	±50.0
1.2.3-Trichlorobenzene	0.400	25.0	±30.0	±50.0
Deuterated Monitoring Compoun	d			-
Vinyl chloride-d3	0.010	20.0	±30.0	±50.0
Chloroethane-ds	0.010	40.0	±30.0	±50.0
1.1-Dichloroethene-d2	0.050	20.0	±25.0	±25.0
2-Butanone-ds	0.010	40.0	±40.0	±50.0
Chloroform-d	0.300	20.0	±20.0	±25.0
1,2-Dichloroethane-d4	0.060	20.0	±25.0	±25.0
Benzene-d ₆	0.300	20.0	±20.0	±25.0
1,2-Dichloropropane-do	0.200	20.0	±20.0	±25.0
Toluene-ds	0.300	20.0	±20.0	±25.0
trans-1,3-Dichloropropene-d4	0.200	20.0	±20.0	±25.0
2-Hexanone-ds	0.010	40.0	±40.0	±50.0
1.1.2.2-Tetrachloroethane-da	0.200	20.0	±25.0	±25.0
1.2-Dichlorobenzene-d4	0.400	20.0	±20.0	±25.0

If a closing CCV is acting as an opening CCV, all target analytes and DMCs must meet the requirements for an opening CCV.

Actions:

- 1. If any volatile target compound has an RRF value less than the minimum in the table, use professional judgment for detects, based on mass spectral identification, to qualify the data as estimated (J+ or R).
 - a. If any volatile target compound has an RRF value less than the minimum criterion, qualify non-detected compounds as unusable (R).
 - b. If any of the volatile target compounds listed in the Table has %RSD greater than the criteria, qualify detects as estimated (J), and non-detected compounds using professional judgment.
 - c. If the volatile target compounds meet the acceptance criteria for RRF and the %RSD, no qualification of the data is necessary.

- d. No qualification of the data is necessary on the DMC RRF and %RSD data alone. Use professional judgment and follow the guidelines in Action 2 to evaluate the DMC RRF and %RSD data in conjunction with the DMC recoveries to determine the need for qualification of data.
- 2. At the reviewer's discretion, and based on the project-specific Data Quality Objectives (DQOs), a more in-depth review may be considered using the following guidelines:
 - a. If any volatile target compound has a %RSD greater than the maximum criterion in the Table, and if eliminating either the high or the low-point of the curve does not restore the %RSD to less than or equal to the required maximum:
 - i. Qualify detects for that compound(s) as estimated (J).
 - ii. Qualify non-detected volatile target compounds using professional judgment.
 - b. If the high-point of the curve is outside of the linearity criteria (e.g., due to saturation):
 - i. Qualify detects outside of the linear portion of the curve as estimated (J).
 - ii. No qualifiers are required for detects in the linear portion of the curve.
 - iii. No qualifiers are required for volatile target compounds that were not detected.
 - c. If the low-point of the curve is outside of the linearity criteria:
 - i. Qualify low-level detects in the area of non-linearity as estimated (J).
 - ii. No qualifiers are required for detects in the linear portion of the curve.
 - iii. For non-detected volatile compounds, use the lowest point of the linear portion of the curve to determine the new quantitation limit.

Note: If the laboratory has failed to provide adequate calibration information, inform the Region's designated representative to contact the laboratory and request the necessary information. If the information is not available, the reviewer must use professional judgment to assess the data.

State in the Data Review Narrative, if possible, the potential effects on the data due to calibration criteria exceedance.

Note, for the Laboratory COR action, if calibration criteria are grossly exceeded.

Table. Initial Calibration Actions for Low/Medium Volatile Analysis – Summary

Criteria	Action		
Chieria	Detect	Non-detect	
Initial Calibration not performed at specified frequency and sequence	Use professional judgment R	Use professional judgment R	
Initial Calibration not performed at the specified concentrations	J	UJ	
RRF < Minimum RRF in Table for target analyte	Use professional judgment J+ or R	R	
RRF > Minimum RRF in Table for target analyte	No qualification	No qualification	
%RSD > Maximum %RSD in Table for target analyte	J	Use professional judgment	
%RSD ≤ Maximum %RSD in Table for target analyte	No qualification	No qualification	

All criteria were met _	_X	
Criteria were not met		
and/or see below		

Continuing Calibration Verification (CCV)

NOTE: Verify that the CCV was run at the required frequency (an opening and closing CCV must be run within 12-hour period) and the CCV was compared to the correct initial calibration. If the mid-point standard from the initial calibration is used as an opening CCV, verify that the result (RRF) of the mid-point standard was compared to the average RRF from the correct initial calibration.

The closing CCV used to bracket the end of a 12-hour analytical sequence may be used as the opening CCV for the new 12-hour analytical sequence, provided that all the technical acceptance criteria are met for an opening CCV (see criteria show before in the Table). If the closing CCV does not meet the technical acceptance criteria for an opening CCV, then a BFB tune followed by an opening CCV is required and the next 12-hour time period begins with the BFB tune.

All DMCs must meet RRF criteria. No qualification of the data is necessary on the DMCs RRF and %RSD/%D data alone. However, use professional judgment to evaluate the DMC and %RSD/%D data in conjunction with the DMC recoveries to determine the need of qualification the data.

Action:

- 1. If a CCV (opening and closing) was not run at the appropriate frequency, qualify data using professional judgment.
- 2. Qualify all volatile target compounds in Table shown before using the following criteria:
 - a. For an opening CCV, if any volatile target compound has an RRF value less than the minimum criterion, use professional judgment for detects, based on mass spectral identification, to qualify the data as estimated (J) and qualify non-detected compounds as unusable (R).
 - b. For a closing CCV, if any volatile target compound has an RRF value less than the criteria, use professional judgment for detects based on mass spectral identification to qualify the data as estimated (J), and qualify non-detected compounds as unusable (R).
 - c. For an opening CCV, if the Percent Difference value for any of the volatile target compounds is outside the limits in calibration criteria Table shown before, qualify detects as estimated (J) and non-detected compounds as estimated (UJ).
 - d. For a closing CCV, if the Percent Difference value for any volatile target compound is outside the limits in calibration criteria table, qualify detects as estimated (J) and non-detected compounds as estimated (UJ).
 - e. If the volatile target compounds meet the acceptable criteria for RRF and the Percent Difference, no qualification of the data is necessary.

f. No qualification of the data is necessary on the DMC RRF and the Percent Difference data alone. Use professional judgment to evaluate the DMC RRF and Percent Difference data in conjunction with the DMC recoveries to determine the need for qualification of data.

Notes: If the laboratory has failed to provide adequate calibration information, inform the Region's designated representative to contact the laboratory and request the necessary information. If the information is not available, the reviewer must use professional judgment to assess the data.

State in the Data Review Narrative, if possible, the potential effects on the data due to calibration criteria exceedance.

Note, for Contract Laboratory COR action, if calibration criteria are grossly exceeded.

Table. Continuing Calibration Actions for Low/Medium Volatile Analysis – Summary

Criteria for Opening	Criteria for	Ac	ction
CCV.	Closing CCV	Detect	Non-detect
CCV not performed at required frequency	CCV not performed at required frequency	Use professional judgment R	Use professional judgment R
CCV not performed at specified concentration	CCV not performed at specified concentration	Use professional judgment	Use professional judgment
RRF < Minimum RRF in Table 2 for target analyte	RRF < Minimum RRF in Table for target analyte	Use professional judgment J or R	R
RRF ≥ Minimum RRF in Table 2 for target analyte	RRF ≥ Minimum RRF in Table for target analyte	No qualification	No qualification
%D outside the Opening Maximum %D limits in Table 2 for target analyte	%D outside the Closing Maximum %D limits in Table for target analyte	ĵ	UJ
%D within the inclusive Opening Maximum %D limits in Table 2 for target analyte	%D within the inclusive Closing Maximum %D limits in Table—for target analyte	No qualification	No qualification

All criteria were met	_X	
Criteria were not met		
and/or see below		_

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

The concentration of a target analyte in any blank must not exceed its Contract Required Quantitation Limit (CRQL) (2x CRQLs for Methylene chloride, Acetone, and 2-Butanone). TIC concentration in any blanks must be $\leq 5.0 \,\mu\text{g/L}$ for water (0.0050 mg/L for TCLP leachate) and $\leq 5.0 \,\mu\text{g/kg}$ for soil matrices.

Laboratory blanks

The method blank, like any other sample in the SDG, must meet the technical acceptance criteria for sample analysis.

ANALYZED	LABID	MATRIX	COMPOUND	UNITS
	-			
• •	anks are presei	nt, the data revie	ewer should evaluate th	is data in a similar fashion a
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
			ageNo_target_analyte	es_detected_in_the_field/

All criteria were metX	
Criteria were not met	
and/or see below	

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Note:

All fields blank results associated with a particular group of samples (may exceed one per case) must be used to qualify data. Trip blanks are used to qualify only those samples with which they were shipped. Blanks may not be qualified because of contamination in another blank. Field blanks and trip blanks must be qualified for system monitoring compounds, instrument performance criteria, and spectral or calibration QC problems.

Samples taken from a drinking water tap do not have associated field blanks.

When applied as described in the Table below, the contaminant concentration in the blank is multiplied by the sample dilution factor.

Table. Blank and TCLP/SPLP LEB Actions for Low/Medium Volatile Analysis

Blank Type	Blank Result	Sample Result	Action for Samples
	Detects	Not detected	No qualification required
	< CDOL *	< CRQL*	Report CRQL value with a U
	< CRQL *	≥ CRQL*	No qualification required
Method,		< CRQL*	Report CRQL value with a U
Storage, Field.		≥ CRQL* and ≤	Report blank value for sample
Trip,	> CRQL *	blank concentration	concentration with a U
TCLP/SPLP		≥ CRQL* and >	No qualification required
LEB.		blank concentration	140 quantication required
Instrument**	= CRQL*	≤CRQL*	Report CRQL value with a U
	-CRQL	> CRQL*	No qualification required
	Gross	Detects	Report blank value for sample
	contamination	Detects	concentration with a U

^{* 2}x the CRQL for methylene chloride, 2-butanone and acetone.

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

^{**} Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed 100 µg/L.

Notes:

High and low level blanks must be treated separately Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
				-55	1
				1	
y	-				
			-		
-				 	

All criteria were met __X__ Criteria were not met and/or see below

DEUTERATED MONITORING COMPOUNDS (DMCs)

Laboratory performance of individual samples is established by evaluation of surrogate spike (DMCs) recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

Table. Volatile Deuterated Monitoring Compounds (DMCs) and Recovery Limits

DMC	%R for Water Sample	%R for Soil Sample
Vinyl chloride-d3	60-135	30-150
Chloroethane-d5	70-130	30-150
1.1-Dichloroethene-d2	60-125	45-110
2-Butanone-d5	40-130	20-135
Chloroform-d	70-125	40-150
1.2-Dichloroethane-d4	70-125	70-130
Benzene-d6	70-125	20-135
1.2-Dichloropropane-d6	70-120	70-120
Toluene-d8	80-120	30-130
trans-1,3-	60-125	30-135
Dichloropropene-d4		
2-Hexanone-d5	45-130	20-135
1,1,2,2-	65-120	45-120
Tetrachloroethane-d2		
1,2-Dichlorobenzene-d4	80-120	75-120

NOTE: The recovery limits for any of the compounds listed in the above Table may be expanded at any time during the period of performance if the United States Environmental Protection Agency (EPA) determines that the limits are too restrictive.

Action:

Are recoveries for DMCs in volatile samples and blanks must be within the limits specified in the Table above.

Yes? or No?

NOTE: The recovery limits for any of the compounds listed in the Table above may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive.

List the DMCs that may fail to meet the recovery limits

Sample ID	Date	DMCs	% Recovery	Action

Note: DMCs recoveries within the required limits and within the guidance document performance criteria (80 – 120. Other non-deuterated surrogates added to the samples within laboratory control limits.

Note: Any sample which has more than 3 DMCs outside the limits must be reanalyzed.

Action:

- 1. For any recovery greater than the upper acceptance limit:
 - a. Qualify detected associated volatile target compounds as estimated high (J+).
 - b. Do not qualify non-detected associated volatile target compounds.
- 2. For any recovery greater than or equal to 10%, and less than the lower acceptance limit:
 - a. Qualify detected associated volatile target compounds as estimated low (J-).
 - b. Qualify non-detected associated volatile target compounds as estimated (UJ).
- 3. For any recovery less than 10%:
 - a. Qualify detected associated volatile target compounds as estimated low (J-).
 - b. Qualify non-detected associated volatile target compounds as unusable (R).
- 4. For any recovery within acceptance limits, no qualification of the data is necessary.
- 5. In the special case of a blank analysis having DMCs out of specification, the reviewer must give special consideration to the validity of associated sample data. The basic concern is whether the blank problems represent an isolated problem with the blank alone, or whether there is a fundamental problem with the analytical process. For example, if one or more samples in the batch show acceptable DMC recoveries, the reviewer may choose to consider the blank problem to be an isolated occurrence. However, even if this judgment allows some use of the affected data, note analytical problems for Contract Laboratory COR action.
- 6. If more than three DMCs are outside of the recovery limits for Low/Medium volatiles analysis and the sample was not reanalyzed, note under Contract Problems/Non-Compliance.

Table. Deuterated Monitoring Compound (DMC) Recovery Actions for Low/Medium Volatiles Analyses – Summary

	Action		
Criteria	Detect Associated Compounds	Non-detected Associated Compounds	
%R < 10%	J-	R	
10% ≤ %R < Lower Acceptance Limit	J-	UJ	
Lower Acceptance Limit $\leq 96R \leq Upper$ Acceptance Limit	No qualification	No qualification	
%R > Upper Acceptance Limit	J+	No qualification	

TABLE. VOLATILE DEUTERATED MONITORING COMPOUNDS (DMCs) AND THE ASSOCIATED TARGET COMPOUNDS

Vinyl chloride-d3 (DMC-1)	Chloroethane-ds (DMC-2)	1,1-Dichloroethene-d2 (DMC-3)
Vinyl chloride	Dichlorodifluoromethane Chloromethane Bromomethane Chloroethane Carbon disulfide	trans-1,2-Dichloroethene cis-1,2-Dichloroethene 1,1-Dichloroethene
2-Butanone-ds (DMC-4)	Chloroform-d (DMC-5)	1,2-Dichloroethane-da (DMC-6)
Acetone 2-Butanone	1.1-Dichloroethane Bromochloromethane Chloroform Dibromochloromethane Bromoform	Trichlorofluoromethane 1.1.2-Trichloro-1.2,2-trifluoroethane Methyl acetate Methylene chloride Methyl-tert-butyl ether 1.1.1-Trichloroethane Carbon tetrachloride 1.2-Dibromoethane 1.2-Dichloroethane
Benzene-ds (DMC-7)	1,2-Dichloropropane-ds (DMC-8)	Toluene-ds (DMC-9)
Benzene	Cyclohexane Methylcyclohexane 1.2-Dichloropropane Bromodichloromethane	Trichloroethene Toluene Tetrachloroethene Ethylbenzene o-Xylene m.p-Xylene Styrene Isopropylbenzene
trans-1,3-Dichloropropene-d4 (DMC-10)	2-Hexanone-ds (DMC-11)	1,1,2,2-Tetrachloroethane-d2 (DMC-12)
cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane	4-Methyl-2-pentanone 2-Hexanone	1,1,2,2,-Tetrachloroethane 1,2-Dibronio-3-chloropropane
1,2-Dichlorobenzene-d4 (DMC-13) Chlorobenzene 1.3-Dichlorobenzene 1.4-Dichlorobenzene 1.2-Dichlorobenzene		
1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene		

All criteria were met	X
Criteria were not met	
and/or see below	

-

MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

NOTES:

Data for MS and MSDs will not be present unless requested by the Region.

Notify the Contract Laboratory COR if a field or trip blank was used for the

MS and MSD.

For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:_ JC33384-2MS	Matrix/Level:	Groundwater
Sample ID:_ JC33384-6MS/-6MSD	Matrix/Level:	_Groundwater

Note: MS/MSD % recoveries and RPD within laboratory control limits.

100000

Note:

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

1. No qualification of the data is necessary on MS and MSD data alone. However, using professional judgment, the validator may use the MS and MSD results in conjunction with other QC criteria and determine the need for some qualification of the data.

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

All criteria were met _	_X_	
Criteria were not met		
and/or see below		

LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

	LCS ID	COMPOUND	% R	QC LIMIT		
Recoveries	ecoveries_(blank_spike)_within_laboratory_control_limits					
		3 - 30				
			304			

Note:

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

			All criteria were metX Criteria were not met and/or see below
IX.	FIELD/LABORA	TORY DUPLICATE PRECISION	
	Sample IDs:	JC33384-7/-7_DUP	Matrix:Groundwater

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

NOTE: In the absence of QAPP guidance for validating data from field duplicates, the following action will be taken.

Identify which samples within the data package are field duplicates. Estimate the relative percent difference (RPD) between the values for each compound. Use professional judgment to note large RPDs (> 50%) in the narrative.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION			
Laboratory duplicate analyzed with this data package. PRD within required criteria, ≤ 50 % for target analytes detected at concentration > 5x the SQL.								

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions are suggested based on professional judgment:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were met	_X					
Criteria were not met						
and/or see below						

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE RANGE	ACTION
lata wallata a da	d tte			also.	
Internal standar	d area counts withi	n the required c	ritena for all sam	ples.	

Action:

- 1. If an internal standard area count for a sample or blank is greater than 200.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration) (see Table below):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated low (J-).
 - b. Do not qualify non-detected associated compounds.
- 2. If an internal standard area count for a sample or blank is less than 20.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration):
 - Qualify detects for compounds quantitated using that internal standard as estimated high (J+).
 - b. Qualify non-detected associated compounds as unusable (R).
- If an internal standard area count for a sample or blank is greater than or equal to 20.0%, and less than or equal to 200% of the area for the associated standard opening CCV or midpoint standard from initial calibration, no qualification of the data is necessary.
- 4. If an internal standard RT varies by more than 30.0 seconds: Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.
- 5. If an internal standard RT varies by less than or equal to 30.0 seconds, no qualification of the data is necessary.

Note: Inform the Contract Laboratory Program Project Officer (CLP PO) if the internal standard performance criteria are grossly exceeded. Note in the Data Review Narrative potential effects on the data resulting from unacceptable internal standard performance.

- 6. If required internal standard compounds are not added to a sample or blank, qualify detects and non-detects as unusable (R).
- 7. If the required internal standard compound is not analyzed at the specified concentration in a sample or blank, use professional judgment to qualify detects and non-detects.

Table. Internal Standard Actions for Low/Medium Volatiles Analyses - Summary

	Action		
Criteria	Detected Associated Compounds*	Non-detected Associated Compounds*	
Area counts > 200% of 12-hour standard (opening CCV or mid-point standard from initial calibration)	J-	No qualification	
Area counts < 20% of 12-hour standard (opening CCV or mid-point standard from initial calibration)	J÷ R		
Area counts ≥ 50% but ≤ 200% of 12-hour standard (opening CCV or mid-point standard from initial calibration)	No qualification		
RT difference > 30.0 seconds between samples and 12-hour standard (opening CCV or mid-point standard from initial calibration)	R** R		
RT difference ≤ 30.0 seconds between samples and 12-hour standard (opening CCV or mid-point standard from initial calibration)	No qualification		

^{*} For volatile compounds associated to each internal standard, see TABLE - VOLATILE TARGET ANALYTES, DEUTERATED MONITORING COMPOUNDS WITH ASSOCIATED INTERNAL STANDARDS FOR QUANTITATION in SOM02.2, Exhibit D, available at: http://www.epa.gov/superfund/programs/clp/download/som/som22d.pdf ** Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.

		All criteria were metX Criteria were not met and/or see below
TARGET COM	POUND IDENTIFICATION	
Criteria:		
	[opening Continuing Calibration Verification	compounds within ±0.06 RRT units of the ation (CCV) or mid-point standard from the <u>Yes</u> ? or No?
List compound	ls not meeting the criteria described above	e:
Sample ID	Compounds	Actions
	_	
spectrum from calibration)] models.	a the associated calibration standard (op- ust match according to the following criter. All ions present in the standard mass 10% must be present in the sample spe The relative intensities of these ions mand sample spectra (e.g., for an ion spectrum, the corresponding sample ion lons present at greater than 10% in the	spectrum at a relative intensity greater than actrum. Sust agree within ±20% between the standard with an abundance of 50% in the standard in abundance must be between 30-70%). Substitute of 50% in the standard in abundance must be between 30-70%). Substitute of 50% in the standard in abundance must be between 30-70%). Substitute of 50% in the standard in abundance must be between 30-70% in the standard in abundance must be be
•	·	
Sample ID	Compounds	Actions

Action:

- 1. The application of qualitative criteria for GC/MS analysis of target compounds requires professional judgment. It is up to the reviewer's discretion to obtain additional information from the laboratory. If it is determined that incorrect identifications were made, qualify all such data as unusable (R).
- 2. Use professional judgment to qualify the data if it is determined that cross-contamination has occurred.
- 3. Note in the Data Review Narrative any changes made to the reported compounds or concerns regarding target compound identifications. Note, for Contract Laboratory COR action, the necessity for numerous or significant changes.

TENTATIVELY IDENTIFIED COMPOUNDS (TICS)

NOTE: Tentatively identified compounds should only be evaluated when requested by a party from outside of the Hazardous Waste Support Section (HWSS).

List	TI	Cs
------	----	----

Sample ID	Compound	Sample ID	Compound

Action:

- Qualify all TIC results for which there is presumptive evidence of a match (e.g. greater than or equal to 85% match) as tentatively identified (NJ), with approximated concentrations. TICs labeled "unknown" are qualified as estimated (J).
- 2. General actions related to the review of TIC results are as follows:
 - a. If it is determined that a tentative identification of a non-target compound is unacceptable, change the tentative identification to "unknown" or another appropriate identification, and qualify the result as estimated (J).
 - b. If all contractually-required peaks were not library searched and quantitated, the Region's designated representative may request these data from the laboratory.
- In deciding whether a library search result for a TIC represents a reasonable identification, use professional judgment. If there is more than one possible match, report the result as "either compound X or compound Y". If there is a lack of isomer specificity, change the TIC result to a nonspecific isomer result (e.g., 1,3,5-trimethyl benzene to trimethyl benzene

- isomer) or to a compound class (e.g., 2-methyl, 3-ethyl benzene to a substituted aromatic compound).
- 4. The reviewer may elect to report all similar compounds as a total (e.g., all alkanes may be summarized and reported as total hydrocarbons).
- 5. Target compounds from other fractions and suspected laboratory contaminants should be marked as "non-reportable".
- 6. Other Case factors may influence TIC judgments. If a sample TIC match is poor, but other samples have a TIC with a valid library match, similar RRT, and the same ions, infer identification information from the other sample TIC results.
- 7. Note in the Data Review Narrative any changes made to the reported data or any concerns regarding TIC identifications.
- 8. Note, for Contract Laboratory COR action, failure to properly evaluate and report TICs

All criteria were met_	х
Criteria were not met	
and/or see below	_

SAMPLE QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

Action:

- 1. If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.
- 2. For non-aqueous samples, in the percent moisture is less than 70.0%, no qualification of the data is necessary. If the percent moisture is greater than or equal to 70.0% and less than 90.0%, qualify detects as estimated (J) and non-detects as approximated (UJ). If the percent moisture is greater than or equal to 90.0%, qualify detects as estimated (J) and non-detects as unusable (R) (see Table below).
- 3. Note, for Contract Laboratory COR action, numerous or significant failures to accurately quantify the target compounds or to properly evaluate and adjust CRQLs.
- 4. Results between MDL and CRQL should be qualified as estimated "J".
- 5. Results < MDL should be reported at the CRQL and qualified "U". MDLs themselves are not reported.

Table. Percent Moisture Actions for Low/Medium Volatiles Analysis for Non-Aqueous Samples

Criteria	Action		
	Detected Associated Compounds	Non-detected Associated Compounds	
% Moisture < 70.0	No	qualification	
70.0 < % Moisture < 90.0	J	UJ	
% Moisture > 90.0	J	R	

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

Sample ID

JC33384-6 MS

1,3-butadiene

RF = 0.619

[] = (167031)(50)/(0.619)(251778) = 53.6 ppb Ok

All criteria were metX Criteria were not met and/or see below	

B. Percent Solids

List samples which h	ave ≥ 70 % solids		
project of the second			

QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
	1	
Wiles -		
-		

All criteria were met __X___

Criteria were not met	
and/or see below	_

OTHER ISSUES

A. System F	Performance	
List samples qua	lified based on the degradation of system	performance during simple analysis:
Sample ID	Comments	Actions
_No_degradation	of_system_performance_observed.	
Action:		
degraded during		determined that system performance has aboratory Program COR any action as a antly affected the data.
B. Overall A	ssessment of Data	
List samples qua	lified based on other issues:	
Sample ID	Comments	Actions
_No_additional_i	ssues_observed_that_require_qualificatio	on_of_the_dataResults_are_valid_and

Action:

- 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed.
- 2. Write a brief narrative to give the user an indication of the analytical limitations of the data. Inform the Contract Laboratory COR the action, any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).

EXECUTIVE NARRATIVE

SDG No:

JC33384

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8270D

Number of Samples:

11

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY: Eleven (11) samples were analyzed for SVOCs TCL special list following method SW846-8270D; Selected PAHs and 1,4-Dioxane were also analyzed by SW846-8270D using the selective ion monitoring (SIM) technique. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: EPA Hazardous Waste Support Section, SOP HW-35A, July 2015 –Revision 0. Semivolatile Data Validation. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

- 1. Initial and continuing calibration verifications meet the method and guidance document required performance criteria except for the cases described in the Data Review Worksheet. Results qualified as estimated (J or UJ) in affected samples.
- * % difference outside was method performance criteria but within the guidance document performance criteria. No action taken.

No action taken for QC samples.

No closing calibration verification included in data package. No action taken, professional judgment.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date: January 13

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC33384-1

Sample location: BMSMC Building 5 Area

Sampling date: 12/6/2016

Matrix: AQ - Equipment Blank

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.3	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.3	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.1	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.3	ug/l	1	-	U	Yes
2,4-Dinitrophenol	11	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.3	ug/l	1	-	U	Yes
2-Methylphenol	2.1	ug/l	1	y 7	U	Yes
3&4-Methylphenol	2.1	ug/l	1	-	Ų	Yes
2-Nitrophenol	5.3	ug/l	1	-	U	Yes
4-Nitrophenol	11	ug/l	1	-	UJ	Yes
Pentachlorophenol	5.3	ug/l	1	-	U	Yes
Phenol	2.1	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.3	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.3	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.3	ug/l	1	-	U	Yes
Acenaphthene	1.1	ug/l	1	-	U	Yes
Acenaphthylene	1.1	ug/l	1	-	U	Yes
Acetophenone	2.1	ug/l	1	-	U	Yes
Anthracene	1.1	ug/l	1	-	U	Yes
Atrazine	2.1	ug/l	1	-	U	Yes
Benzaldehyde	5.3	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.1	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.1	ug/l	1	-	U	Yes
Benzo(b) fluoranthene	1.1	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.1	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.1	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.1	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.1	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.1	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.1	ug/l	1	-	U	Yes
4-Chloroaniline	5.3	ug/l	1	-	U	Yes
Carbazole	1.1	ug/l	1	-	U	Yes
Caprolactam	2.1	ug/l	1	-	U	Yes
Chrysene	1.1	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.1	ug/l	1	-	U	Yes

bis(2-Chloroethyl)ether	2.1	ug/l	1	-	U	Yes
bis(2-Chloroisopropyl)ether	2.1	ug/l	1	0.20	U	Yes
4-Chlorophenyl phenyl ether	2.1	ug/l	1		U	Yes
2,4-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
2,6-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.1	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	1.1	ug/l	1	-	U	Yes
Dibenzofuran	5.3	ug/l	1	_	U	Yes
Di-n-butyl phthalate	2.1	ug/l	1	-	U	Yes
Di-n-octyl phthalate	2.1	ug/l	1	-	U	Yes
Diethyl phthalate	2.1	ug/l	1	-	U	Yes
Dimethyl phthalate	2.1	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.1	ug/l	1	-	U	Yes
Fluoranthene	1.1	ug/l	1	-	U	Yes
Fluorene	1.1	ug/l	1	-	U	Yes
Hexachlorobenzene	1.1	ug/l	1	-	U	Yes
Hexachlorobutadiene	1.1	ug/l	1	_	U	Yes
Hexachlorocyclopentadiene	11	ug/l	1	-	U	Yes
Hexachloroethane	2.1	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.1	ug/l	1	-	U	Yes
Isophorone	2.1	ug/l	1	-	U	Yes
2-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Nitroaniline	5.3	ug/l	1	-	U	Yes
3-Nitroaniline	5.3	ug/l	1		U	Yes
4-Nitroaniline	5.3	ug/l	1	121	U	Yes
Nitrobenzene	2.1	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.1	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.3	ug/l	1	20	U	Yes
Phenanthrene	1.1	ug/l	1		U	Yes
Pyrene	1.1	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.1	ug/l	1	_	U	Yes
, , ,		<u>.</u>				
METHOL): 8270D (SII	M)				
Benzo(a)anthracene	0.053	ug/l	1	-	U	Yes
Benzo(a)pyrene	0.053	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	0.11	ug/l	1	-	UJ	Yes 🗸 🖊
Benzo(k)fluoranthene	0.11	ug/l	1	-	U	Yes
Chrysene	0.11	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	0.11	ug/l	1	220	UJ	Yes 🗸 🖊
Indeno(1,2,3-cd)pyrene	0.11	ug/l	1	-	U	Yes
Naphthalene	0.11	ug/l	1	252	U	Yes
1,4-Dioxane	0.11	ug/l	1	-	U	Yes

.

Sample location: BMSMC Building 5 Area

Sampling date: 12/6/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.6	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.6	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.2	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.6	ug/l	1	-	U	Yes
2,4-Dinitrophenol	11	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.6	ug/l	1	-	U	Yes
2-Methylphenol	2.2	ug/l	1	-	U	Yes
3&4-Methylphenol	2.2	ug/l	1	-	U	Yes
2-Nitrophenol	5.6	ug/l	1	-	U	Yes
4-Nitrophenol	11	ug/l	1	-	UJ	Yes 🗸
Pentachlorophenol	4.4	ug/l	1	-	U	Yes
Phenol	2.2	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.6	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.6	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.6	ug/l	1	-	U	Yes
Acenaphthene	1.1	ug/i	1	-	U	Yes
Acenaphthylene	1.1	ug/l	1	-	U	Yes
Acetophenone	2.2	ug/l	1	-	U	Yes
Anthracene	1.1	ug/l	1	-	U	Yes
Atrazine	2.2	ug/l	1		U	Yes
Benzaldehyde	5.6	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.1	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.1	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.1	ug/l	1	_	U	Yes
Benzo(g,h,i)perylene	1.1	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.1	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.1	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.2	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.1	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.2	ug/l	1	-	U	Yes
4-Chloroaniline	5.6	ug/l	1	-	U	Yes
Carbazole	1.1	ug/l	1	-	U	Yes
Caprolactam	2.2	ug/l	1	-	U	Yes
Chrysene	1.1	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.2	ug/l	1	-	U	Yes
bis(2-Chloroethyl)ether	2.2	ug/l	1	-	U	Yes

bis(2-Chloroisopropyl)ether	2.2	ug/l	1	_	U	Yes
4-Chlorophenyl phenyl ether	2.2	ug/l	1	22	U	Yes
2,4-Dinitrotoluene	1.1	ug/l	1		Ū	Yes
2,6-Dinitrotoluene	1.1	ug/l	1	_	U	Yes
3,3'-Dichlorobenzidine	2.2	ug/l	1	-	U	Yes
1,4-Dioxane	324	ug/l	1	-	-	Yes
Dibenzo(a,h)anthracene	1.1	ug/l	1	-	U	Yes
Dibenzofuran	5.6	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.2	ug/l	1	-	Ų	Yes
Di-n-octyl phthalate	2.2	ug/l	1	-	U	Yes
Diethyl phthalate	2.2	ug/l	1	-	U	Yes
Dimethyl phthalate	2.2	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.2	ug/l	1	21	U	Yes
Fluoranthene	1.1	ug/l	1	-	U	Yes
Fluorene	1.1	ug/l	1	-	U	Yes
Hexachlorobenzene	1.1	ug/l	1	2	U	Yes
Hexachlorobutadiene	1.1	ug/l	1	-	U	Yes
Hexachlorocyclopentadiene	11	ug/l	1	· - 0	U	Yes
Hexachloroethane	2.2	ug/l	1	_	U	Yes
Indeno(1,2,3-cd)pyrene	1.1	ug/l	1	(#):	U	Yes
Isophorone	2.2	ug/l	1	-	U	Yes
2-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Nitroaniline	5.6	ug/l	1	-	U	Yes
3-Nitroaniline	5.6	ug/l	1	-	U	Yes
4-Nitroaniline	5.6	ug/l	1		U	Yes
Nitrobenzene	2.2	ug/l	1		U	Yes
N-Nitroso-di-n-propylamine	2.2	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.6	ug/l	1	-	U	Yes
Phenanthrene	1.1	ug/l	1	-	U	Yes
Pyrene	1.1	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.2	ug/l	1	-	U	Yes
METHOD): 8270D (SII	VI)				
Benzo(a)anthracene	0.056	ug/l	1	-	U	Yes
Benzo(a)pyrene	0.056	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	0.11	ug/l	1	1	UJ	Yes 🗸
Benzo(k)fluoranthene	0.11	ug/l	1		U	Yes
Chrysene	0.11	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	0.11	ug/l	1		UJ	Yes //
Indeno(1,2,3-cd)pyrene	0.11	ug/l	1	, -	U	Yes
Naphthalene	0.11	ug/l	1	-	U	Yes

6. 2.

Sample location: BMSMC Building 5 Area

Sampling date: 12/6/2016

Matrix: AQ - Field Blank Water

WETTOD. C	12100					
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.1	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.1	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.0	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.1	ug/l	1	-	U	Yes
2,4-Dinitrophenol	10	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.1	ug/l	1	-	U	Yes
2-Methylphenol	2.0	ug/l	1	-	U	Yes
3&4-Methylphenol	2.0	ug/l	1	-	U	Yes
2-Nitrophenol	5.1	ug/l	1	-	U	Yes
4-Nitrophenol	10	ug/l	1	-	UJ	Yes 🗸
Pentachlorophenol	4.0	ug/l	1	-	U	Yes
Phenol	2.0	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.1	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.1	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.1	ug/l	1	-	U	Yes
Acenaphthene	1.0	ug/l	1	-	U	Yes
Acenaphthylene	1.0	ug/l	1	-	U	Yes
Acetophenone	2.0	ug/l	1	-	U	Yes
Anthracene	1.0	ug/l	1	-	U	Yes
Atrazine	2.0	ug/l	1	-	U	Yes
Benzaldehyde	5.1	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.0	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.0	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.0	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.0	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.0	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.0	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.0	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.0	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.0	ug/l	1	-	U	Yes
4-Chloroaniline	5.1	ug/l	1	-	U	Yes
Carbazole	1.0	ug/l	1	-	U	Yes
Caprolactam	2.0	ug/l	1	-	U	Yes
Chrysene	1.0	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.0	ug/l	1	-	U	Yes
bis (2-Chloroethyl) ether	2.0	ug/l	1	-	U	Yes
bis (2-Chlorois opropyl) ether	2.0	ug/l	1	-	U	Yes

4-Chlorophenyl phenyl ether	2.0	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	1.0	ug/l	1	-	U	Yes
2,6-Dinitrotoluene	1.0	ug/l	1	-	Ų	Yes
3,3'-Dichlorobenzidine	2.0	ug/l	1	1.7	U	Yes
Dibenzo(a,h)anthracene	1.0	ug/l	1	-	U	Yes
Dibenzofuran	5.1	ug/l	1		U	Yes
Di-n-butyl phthalate	2.0	ug/l	1	0.70	U	Yes
Di-n-octyl phthalate	2.0	ug/l	1	-	U	Yes
Diethyl phthalate	2.0	ug/l	1	; - ;	U	Yes
Dimethyl phthalate	2.0	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.0	ug/l	1	-	U	Yes
Fluoranthene	1.0	ug/l	1	-	U	Yes
Fluorene	1.0	ug/l	1	-	U	Yes
Hexachlorobenzene	1.0	ug/l	1	2.2	U	Yes
Hexachlorobutadiene	1.0	ug/l	1	(.+.)	U	Yes
Hexachlorocyclopentadiene	10	ug/l	1	-	U	Yes
Hexachloroethane	2.0	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.0	ug/l	1	-	U	Yes
Isophorone	2.0	ug/l	1	127	U	Yes
2-Methylnaphthalene	1.0	ug/l	1	-	U	Yes
2-Nitroaniline	5.1	ug/l	1		U	Yes
3-Nitroaniline	5.1	ug/l	1	_	U	Yes
4-Nitroaniline	5.1	ug/l	1	-	U	Yes
Nitrobenzene	2.0	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.0	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.1	ug/l	1	-	U	Yes
Phenanthrene	1.0	ug/l	1	7.0	U	Yes
Pyrene	1.0	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.0	ug/l	1	-	U	Yes
METHOL	D: 8270D (SII	M)				
Benzo(a)anthracene	0.051	ug/l	1	-	U	Yes
Benzo(a)pyrene	0.051	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	0.10	ug/l	1	-	UJ	Yes
Benzo(k)fluoranthene	0.10	ug/l	1		U	Yes
Chrysene	0.10	ug/l	1	2	U	Yes
Dibenzo(a,h)anthracene	0.10	ug/l	1		UJ	Yes //
Indeno(1,2,3-cd)pyrene	0.10	ug/l	1		U	Yes
Naphthalene	0.10	ug/l	1	-	Ü	Yes
1,4-Dioxane	0.10	ug/l	1	-	Ü	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 12/7/2016

Matrix: AQ - Equipment Blank

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.2	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.2	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.1	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.2	ug/l	1	-	U	Yes
2,4-Dinitrophenol	10	ug/l	1	-	Ų	Yes
4,6-Dinitro-o-cresol	5.2	ug/l	1	-	U	Yes
2-Methylphenol	2.1	ug/l	1	-	U	Yes
3&4-Methylphenol	2.1	ug/l	1	-	U	Yes
2-Nitrophenol	5.2	ug/l	1	-	U	Yes
4-Nitrophenol	10	ug/l	1	-	U	Yes
Pentachlorophenol	4.2	ug/l	1	-	U	Yes
Phenol	2.1	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.2	ug/l	1	-	UJ	Yes 🗸 🦯
2,4,5-Trichlorophenol	5.2	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.2	ug/l	1	-	U	Yes
Acenaphthene	1.0	ug/l	1	-	U	Yes
Acenaphthylene	1.0	ug/l	1	-	U	Yes
Acetophenone	2.1	ug/l	1	-	U	Yes
Anthracene	1.0	ug/l	1	-	U	Yes
Atrazine	2.1	ug/l	1	-	U	Yes
Benzaldehyde	5.2	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.0	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.0	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.0	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.0	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.0	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.0	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.1	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.0	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.1	ug/l	1	-	U	Yes
4-Chloroaniline	5.2	ug/l	1	-	U	Yes
Carbazole	1.0	ug/l	1	-	U	Yes
Caprolactam	2.1	ug/l	1	-	U	Yes
Chrysene	1.0	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.1	ug/l	1	-	U	Yes
bis(2-Chloroethyl)ether	2.1	ug/l	1	-	U	Yes
bis(2-Chloroisopropyl)ether	2.1	ug/l	1	-	U	Yes

4-Chlorophenyl phenyl ether	2.1	ug/l	1		U	Yes
2,4-Dinitrotoluene	1.0	ug/l	1	-	U	Yes
2,6-Dinitrotoluene	1.0	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.1	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	1.0	ug/l	1	-	U	Yes
Dibenzofuran	5.2	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.1	ug/l	1		U	Yes
Di-n-octyl phthalate	2.1	ug/l	1		U	Yes
Diethyl phthalate	2.1	ug/l	1	-	U	Yes
Dimethyl phthalate	2.1	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.1	ug/l	1	-	U	Yes
Fluoranthene	1.0	ug/l	1	-	U	Yes
Fluorene	1.0	ug/l	1	-	U	Yes
Hexachlorobenzene	1.0	ug/l	1		U	Yes
Hexachlorobutadiene	1.0	ug/l	1	2.7	U	Yes
Hexachlorocyclopentadiene	10	ug/l	1	-	U	Yes
Hexachloroethane	2.1	ug/l	1		U	Yes
Indeno(1,2,3-cd)pyrene	1.0	ug/l	1		U	Yes
Isophorone	2.1	ug/l	1	-	Ų	Yes
2-Methylnaphthalene	1.0	ug/l	1	27.0	U	Yes
2-Nitroaniline	5.2	ug/l	1	-	U	Yes
3-Nitroaniline	5.2	ug/l	1		U	Yes
4-Nitroaniline	5.2	ug/l	1	370	U	Yes
Nitrobenzene	2.1	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.1	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.2	ug/l	1	-	U	Yes
Phenanthrene	1.0	ug/l	1	-	U	Yes
Pyrene	1.0	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.1	ug/l	1	-	U	Yes
	8270D (SII					
Benzo(a)anthracene	0.052	ug/l	1	-	U	Yes
Benzo(a)pyrene	0.052	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	0.10	ug/l	1	7.7	U	Yes
Benzo(k)fluoranthene	0.10	ug/l	1	-	U	Yes
Chrysene	0.10	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	0.10	ug/l	1	5.7	U	Yes
Indeno(1,2,3-cd)pyrene	0.10	ug/l	1	-	U	Yes
Naphthalene	0.10	ug/l	1		U	Yes
1,4-Dioxane	0.10	ug/l	1		U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 12/7/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.0	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.0	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.0	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.0	ug/l	1	-	U	Yes
2,4-Dinitrophenol	10	ug/l	1	-	Ų	Yes
4,6-Dinitro-o-cresol	5.0	ug/l	1	-	U	Yes
2-Methylphenol	2.0	ug/l	1	-	U	Yes
3&4-Methylphenol	2.0	ug/l	1	-	U	Yes
2-Nitrophenol	5.0	ug/l	1	-	U	Yes
4-Nitrophenol	10	ug/l	1	-	U	Yes
Pentachlorophenol	4.0	ug/l	1	-	U	Yes
Phenol	2.0	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.0	ug/l	1	~	UJ	Yes
2,4,5-Trichlorophenol	5.0	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.0	ug/l	1	-	U	Yes
Acenaphthene	1.0	ug/l	1	-	U	Yes
Acenaphthylene	1.0	ug/l	1	-	U	Yes
Acetophenone	2.0	ug/l	1	. +	U	Yes
Anthracene	1.0	ug/l	1	-	U	Yes
Atrazine	2.0	ug/l	1	-	U	Yes
Benzaldehyde	5.0	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.0	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.0	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.0	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.0	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.0	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.0	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.0	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.0	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.0	ug/l	1	-	U	Yes
4-Chloroaniline	5.0	ug/l	1	-	U	Yes
Carbazole	1.0	ug/l	1	-	U	Yes
Caprolactam	2.0	ug/l	1	-	U	Yes
Chrysene	1.0	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.0	ug/l	1	-	U	Yes
bis(2-Chloroethyl)ether	2.0	ug/l	1	-	U	Yes
bis(2-Chloroisopropyl)ether	2.0	ug/l	1	-	U	Yes

4-Chlorophenyl phenyl ether	2.0	ug/l	1		U	Yes
2,4-Dinitrotoluene	1.0	ug/l	1	-	U	Yes
2,6-Dinitrotoluene	1.0	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.0	ug/l	1		U	Yes
Dibenzo(a,h)anthracene	1.0	ug/l	1	-	U	Yes
Dibenzofuran	5.0	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.0	ug/l	1		U	Yes
Di-n-octyl phthalate	2.0	ug/l	1	-	U	Yes
Diethyl phthalate	2.0	ug/l	1	-	U	Yes
Dimethyl phthalate	2.0	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.0	ug/l	1	-	U	Yes
Fluoranthene	1.0	ug/l	1	-	U	Yes
Fluorene	1.0	ug/l	1	-	U	Yes
Hexachlorobenzene	1.0	ug/l	1	-	U	Yes
Hexachlorobutadiene	1.0	ug/l	1		U	Yes
Hexachlorocyclopentadiene	10	ug/l	1	20	U	Yes
Hexachloroethane	2.0	ug/l	1		U	Yes
Indeno(1,2,3-cd)pyrene	1.0	ug/l	1	-	U	Yes
Isophorone	2.0	ug/l	1	_	U	Yes
2-Methylnaphthalene	1.0	ug/l	1	-	U	Yes
2-Nitroaniline	5.0	ug/l	1	-	Ų	Yes
3-Nitroaniline	5.0	ug/l	1	2.7	Ų	Yes
4-Nitroaniline	5.0	ug/l	1		U	Yes
Nitrobenzene	2.0	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.0	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.0	ug/l	1	-	U	Yes
Phenanthrene	1.0	ug/l	1	-	U	Yes
Pyrene	1.0	ug/l	1		U	Yes
1,2,4,5-Tetrachlorobenzene	2.0	ug/l	1	-	U	Yes
METHOD:	8270D (SII	VI)				
Benzo(a)anthracene	0.050	ug/l	1	-	Ų	Yes
Benzo(a)pyrene	0.050	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	0.10	ug/l	1		U	Yes
Benzo(k)fluoranthene	0.10	ug/l	1	-	U	Yes
Chrysene	0.10	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	0.10	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	0.10	ug/l	1	37.0	U	Yes
Naphthalene	0.10	ug/l	1	-	U	Yes
1,4-Dioxane	3.27	ug/l	1		-	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 12/7/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.2	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.2	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.1	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.2	ug/l	1	-	U	Yes
2,4-Dinitrophenol	10	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.2	ug/l	1	-	U	Yes
2-Methylphenol	2.1	ug/l	1	-	U	Yes
3&4-Methylphenol	2.1	ug/l	1	-	U	Yes
2-Nitrophenol	5.2	ug/l	1	-	U	Yes
4-Nitrophenol	10	ug/l	1	-	U	Yes
Pentachlorophenol	4.1	ug/l	1	-	U	Yes
Phenol	2.1	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.2	ug/l	1	-	UJ	Yes
2,4,5-Trichlorophenol	5.2	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.2	ug/l	1	-	U	Yes
Acenaphthene	1.0	ug/l	1	-	U	Yes
Acenaphthylene	1.0	ug/l	1	-	U	Yes
Acetophenone	2.1	ug/l	1	-	U	Yes
Anthracene	1.0	ug/l	1	-	U	Yes
Atrazine	2.1	ug/l	1	-	U	Yes
Benzaldehyde	5.2	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.0	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.0	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.0	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.0	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.0	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.0	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.1	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.0	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.1	ug/l	1	-	U	Yes
4-Chloroaniline	5.2	ug/l	1	-	U	Yes
Carbazole	1.0	ug/l	1	-	U	Yes
Caprolactam	2.1	ug/l	1	-	U	Yes
Chrysene	1.0	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.1	ug/l	1	-	U	Yes
bis(2-Chloroethyl)ether	2.1	ug/l	1	-	U	Yes
bis(2-Chloroisopropyl)ether	2.1	ug/l	1	-	U	Yes

4-Chlorophenyl phenyl ether	2.1	ug/l	1		U	Yes
2,4-Dinitrotoluene	1.0	ug/l	1	-	U	Yes
2,6-Dinitrotoluene	1.0	ug/l	1	- 1	U	Yes
3,3'-Dichlorobenzidine	2.1	ug/l	1	2	U	Yes
Dibenzo(a,h)anthracene	1.0	ug/l	1	•	U	Yes
Dibenzofuran	5.2	ug/l	1	•	U	Yes
Di-n-butyl phthalate	2.1	ug/l	1	_	U	Yes
Di-n-octyl phthalate	2.1	ug/l	1	-	U	Yes
Diethyl phthalate	2.1	ug/l	1	-	U	Yes
Dimethyl phthalate	2.1	ug/l	1	-	U	Yes
bis (2-Ethylhexyl) phthalate	2.1	ug/l	1		U	Yes
Fluoranthene	1.0	ug/l	1	-	U	Yes
Fluorene	1.0	ug/l	1	-	U	Yes
Hexachlorobenzene	1.0	ug/l	1	-	U	Yes
Hexachlorobutadiene	1.0	ug/l	1		U	Yes
Hexachlorocyclopentadiene	10	ug/l	1	•	U	Yes
Hexachloroethane	2.1	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.0	ug/l	1	-	U	Yes
Isophorone	2.1	ug/l	1	-	U	Yes
2-Methylnaphthalene	1.0	ug/l	1		U	Yes
2-Nitroaniline	5.2	ug/l	1		U	Yes
3-Nitroaniline	5.2	ug/l	1	-	U	Yes
4-Nitroaniline	5.2	ug/l	1	-	IJ	Yes
Nitrobenzene	2.1	ug/l	1	_	U	Yes
N-Nitroso-di-n-propylamine	2.1	ug/l	1	•	U	Yes
Nitrosodiphenylamine	5.2	ug/l	1	-	U	Yes
Phenanthrene	1.0	ug/l	1	-	U	Yes
Pyrene	1.0	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.1	ug/l	1	-	U	Yes
METHOD:	8270D (SII	VI)				
Benzo(a)anthracene	0.052	ug/l	1	-	U	Yes
Benzo(a)pyrene	0.052	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	0.10	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	0.10	ug/l	1	-	U	Yes
Chrysene	0.10	ug/l	1		U	Yes
Dibenzo(a,h)anthracene	0.10	ug/l	1	100	U	Yes
Indeno(1,2,3-cd)pyrene	0.10	ug/l	1	-	U	Yes
Naphthalene	0.10	ug/l	1	-	U	Yes
1,4-Dioxane	0.746	ug/l	1	-	U	Yes

.

Sample location: BMSMC Building 5 Area

Sampling date: 12/7/2016 Matrix: Groundwater

METHOD: 8	3270D					
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.1	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.1	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.0	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.1	ug/l	1	-	U	Yes
2,4-Dinitrophenol	10	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.1	ug/l	1	-	U	Yes
2-Methylphenol	2.0	ug/l	1	-	Ų	Yes
3&4-Methylphenol	2.0	ug/l	1	-	U	Yes
2-Nitrophenol	5.1	ug/l	1	-	U	Yes
4-Nitrophenol	10	ug/l	1	-	U	Yes
Pentachlorophenol	4.1	ug/l	1	-	U	Yes
Phenol	2.0	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.1	ug/l	1	-	UJ	Yes
2,4,5-Trichlorophenol	5.1	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.1	ug/l	1	-	U	Yes
Acenaphthene	1.0	ug/l	1	-	U	Yes
Acenaphthylene	1.0	ug/l	1	-	U	Yes
Acetophenone	2.0	ug/l	1	-	U	Yes
Anthracene	1.0	ug/l	1	-	U	Yes
Atrazine	2.0	ug/l	1	-	U	Yes
Benzaldehyde	5.1	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.0	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.0	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.0	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.0	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.0	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.0	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.0	ug/l	1	-	Ų	Yes
1,1'-Biphenyl	1.0	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.0	ug/l	1	-	U	Yes
4-Chloroaniline	5.1	ug/l	1	-	U	Yes
Carbazole	1.0	ug/l	1	-	U	Yes
Caprolactam	2.0	ug/l	1	-	U	Yes
Chrysene	1.0	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.0	ug/l	1	-	U	Yes
bis (2-Chloroethyl) ether	2.0	ug/l	1	-	U	Yes
bis(2-Chloroisopropyl)ether	2.0	ug/l	1	-	U	Yes

4-Chlorophenyl phenyl ether	2.0	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	1.0	ug/l	1	-	U	Yes
2,6-Dinitrotoluene	1.0	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.0	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	1.0	ug/l	1	-	U	Yes
Dibenzofuran	5.1	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.0	ug/l	1		U	Yes
Di-n-octyl phthalate	2.0	ug/l	1	-	Ų	Yes
Diethyl phthalate	2.0	ug/l	1	14	Ų	Yes
Dimethyl phthalate	2.0	ug/l	1	-	U	Yes
bis (2-Ethylhexyl) phthalate	2.0	ug/l	1	-	U	Yes
Fluoranthene	1.0	ug/l	1	-	U	Yes
Fluorene	1.0	ug/l	1	-	U	Yes
Hexachlorobenzene	1.0	ug/l	1	175	U	Yes
Hexachlorobutadiene	1.0	ug/l	1	-	U	Yes
Hexachlorocyclopentadiene	10	ug/l	1	-	U	Yes
Hexachloroethane	2.0	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.0	ug/l	1	-	Ų	Yes
Isophorone	2.0	ug/l	1	-	U	Yes
2-Methylnaphthalene	1.0	ug/l	1	-	U	Yes
2-Nitroaniline	5.1	ug/l	1	-	Ų	Yes
3-Nitroaniline	5.1	ug/l	1	•	U	Yes
4-Nitroaniline	5.1	ug/l	1	-	U	Yes
Nitrobenzene	2.0	ug/l	1	-	Ų	Yes
N-Nitroso-di-n-propylamine	2.0	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.1	ug/l	1	-	Ų	Yes
Phenanthrene	1.0	ug/l	1		U	Yes
Pyrene	1.0	ug/l	1	7	U	Yes
1,2,4,5-Tetrachlorobenzene	2.0	ug/l	1	2	U	Yes
METHOD: 8		M)				
Benzo(a)anthracene	0.051	ug/i	1		U	Yes
Benzo(a)pyrene	0.051	ug/l	1		U	Yes
Benzo(b)fluoranthene	0.10	ug/l	1	47.0	U	Yes
Benzo(k)fluoranthene	0.10	ug/l	1	-	U	Yes
Chrysene	0.10	ug/l	1		U	Yes
Dibenzo(a,h)anthracene	0.10	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	0.10	ug/l	1	-	U	Yes
Naphthalene	0.10	ug/l	1		U	Yes
1,4-Dioxane	0.222	ug/l	1	-	U	Yes

. .

Sample location: BMSMC Building 5 Area

Sampling date: 12/7/2016 Matrix: Groundwater

METHOD: 1	827UD					
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.1	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.1	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.0	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.1	ug/l	1	-	U	Yes
2,4-Dinitrophenol	10	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.1	ug/l	1	-	Ų	Yes
2-Methylphenol	2.0	ug/l	1	-	U	Yes
3&4-Methylphenol	2.0	ug/l	1	-	U	Yes
2-Nitrophenol	5.1	ug/l	1	-	U	Yes
4-Nitrophenol	10	ug/l	1	-	U	Yes
Pentachlorophenol	4.1	ug/l	1	-	U	Yes
Phenol	2.0	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.1	ug/l	1	-	UJ	Yes
2,4,5-Trichlorophenol	5.1	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.1	ug/l	1	-	U	Yes
Acenaphthene	1.0	ug/l	1	-	U	Yes
Acenaphthylene	1.0	ug/l	1	-	U	Yes
Acetophenone	2.0	ug/l	1	-	Ü	Yes
Anthracene	1.0	ug/l	1	-	U	Yes
Atrazine	2.0	ug/l	1	-	U	Yes
Benzaldehyde	5.1	ug/l	1	-	Ü	Yes
Benzo(a)anthracene	1.0	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.0	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.0	ug/l	1	-	Ü	Yes
Benzo(g,h,i)perylene	1.0	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.0	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.0	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.0	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.0	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.0	ug/l	1	-	U	Yes
4-Chloroaniline	5.1	ug/l	1	-	U	Yes
Carbazole	1.0	ug/l	1	-	U	Yes
Caprolactam	2.0	ug/l	1	-	U	Yes
Chrysene	1.0	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.0	ug/l	1	-	U	Yes
bis(2-Chloroethyl)ether	2.0	ug/l	1	-	U	Yes
bis(2-Chloroisopropyl)ether	2.0	ug/l	1	-	U	Yes

4-Chlorophenyl phenyl ether	2.0	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	1.0	ug/l	1		U	Yes
2,6-Dinitrotoluene	1.0	ug/l	1		U	Yes
3,3'-Dichlorobenzidine	2.0	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	1.0	ug/l	1	-	U	Yes
Dibenzofuran	5.1	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.0	ug/l	1	-	U	Yes
Di-n-octyl phthalate	2.0	ug/l	1		U	Yes
Diethyl phthalate	2.0	ug/l	1	-	U	Yes
Dimethyl phthalate	2.0	ug/l	1	-	U	Yes
bis (2-Ethylhexyl) phthalate	2.0	ug/l	1	-	U	Yes
Fluoranthene	1.0	ug/l	1	-	U	Yes
Fluorene	1.0	ug/l	1	7.0	U	Yes
Hexachlorobenzene	1.0	ug/l	1		U	Yes
Hexachlorobutadiene	1.0	ug/l	1	-	U	Yes
Hexachlorocyclopentadiene	10	ug/l	1	-	U	Yes
Hexachloroethane	2.0	ug/l	1	100	U	Yes
Indeno(1,2,3-cd)pyrene	1.0	ug/l	1	-	U	Yes
Isophorone	2.0	ug/l	1	-	U	Yes
2-Methylnaphthalene	1.0	ug/l	1		U	Yes
2-Nitroaniline	5.1	ug/l	1	-	U	Yes
3-Nitroaniline	5.1	ug/l	1	-	U	Yes
4-Nitroaniline	5.1	ug/l	1	17.	U	Yes
Nitrobenzene	2.0	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.0	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.1	ug/l	1	-	U	Yes
Phenanthrene	1.0	ug/l	1	-	U	Yes
Pyrene	1.0	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.0	ug/l	1	-	U	Yes
METHOD	92700 /611	\				
	8270D (SII 0.051	*	1		U	Yes
Benzo(a)anthracene	0.051	ug/l	1	-	U	Yes
Benzo(a)pyrene		ug/l	1	-	U	Yes
Benzo(b)fluoranthene	0.10	ug/l	-	•	U	Yes
Benzo(k)fluoranthene	0.10	ug/l	1	-	_	
Chrysene	0.10	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	0.10	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	0.10	ug/l	1	-	U	Yes
Naphthalene	0.10	ug/l	1	-	U	Yes
1,4-Dioxane	1.84	ug/l	1	17	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 12/7/2016

Matrix: AQ - Field Blank Water

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.4	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.4	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.2	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.4	ug/l	1	-	U	Yes
2,4-Dinitrophenol	11	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.4	ug/l	1	-	U	Yes
2-Methylphenol	2.2	ug/l	1	-	U	Yes
3&4-Methylphenol	2.2	ug/l	1	-	U	Yes
2-Nitrophenol	5.4	ug/l	1	-	U	Yes
4-Nitrophenol	11	ug/l	1	-	U	Yes
Pentachlorophenol	4.3	ug/l	1	-	U	Yes
Phenol	2.2	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.4	ug/l	1	-	UJ	Yes
2,4,5-Trichlorophenol	5.4	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.4	ug/l	1	-	U	Yes
Acenaphthene	1.1	ug/l	1	-	U	Yes
Acenaphthylene	1.1	ug/l	1	-	U	Yes
Acetophenone	2.2	ug/l	1	-	Ų	Yes
Anthracene	1.1	ug/l	1	-	U	Yes
Atrazine	2.2	ug/l	1	-	U	Yes
Benzaldehyde	5.4	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.1	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.1	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.1	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.1	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.1	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.1	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.2	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.1	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.2	ug/l	1	-	U	Yes
4-Chloroaniline	5.4	ug/l	1	-	U	Yes
Carbazole	1.1	ug/l	1	-	U	Yes
Caprolactam	2.2	ug/l	1	-	U	Yes
Chrysene	1.1	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.2	ug/l	1	-	U	Yes
bis(2-Chloroethyl)ether	2.2	ug/l	1	-	U	Yes
bis(2-Chloroisopropyl)ether	2.2	ug/l	1	-	Ų	Yes

4-Chlorophenyl phenyl ether	2.2	ug/l	1		U	Yes
2,4-Dinitrotoluene	1.1	ug/l	1	-	Ü	Yes
2,6-Dinitrotoluene	1.1	ug/l	1		U	Yes
3,3'-Dichlorobenzidine	2.2	ug/l	1	_	U	Yes
Dibenzo(a,h)anthracene	1.1	ug/l	1	-	U	Yes
Dibenzofuran	5.4	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.2	ug/l	1	-	U	Yes
Di-n-octyl phthalate	2.2	ug/l	1	-	U	Yes
Diethyl phthalate	2.2	ug/l	1	2	U	Yes
Dimethyl phthalate	2.2	ug/l	1		Ų	Yes
bis(2-Ethylhexyl)phthalate	2.2	ug/l	1	1.0	U	Yes
Fluoranthene	1.1	ug/l	1	-	U	Yes
Fluorene	1.1	ug/l	1	-	U	Yes
Hexachlorobenzene	1.1	ug/l	1		U	Yes
Hexachlorobutadiene	1.1	ug/l	1	12	U	Yes
Hexachlorocyclopentadiene	11	ug/l	1	*	U	Yes
Hexachloroethane	2.2	ug/l	1	350	U	Yes
Indeno(1,2,3-cd)pyrene	1.1	ug/l	1	-	U	Yes
Isophorone	2.2	ug/l	1	-	U	Yes
2-Methylnaphthalene	1.1	ug/l	1		Ų	Yes
2-Nitroaniline	5.4	ug/l	1	-	U	Yes
3-Nitroaniline	5.4	ug/l	1	-	U	Yes
4-Nitroaniline	5.4	ug/l	1	.74	U	Yes
Nitrobenzene	2.2	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.2	ug/l	1		U	Yes
Nitrosodiphenylamine	5.4	ug/l	1	-	U	Yes
Phenanthrene	1.1	ug/l	1	-	U	Yes
Pyrene	1.1	ug/l	1	0.00	U	Yes
1,2,4,5-Tetrachlorobenzene	2.2	ug/l	1	-	U	Yes
METHOD:	8270D (SII	\/I\				
Benzo(a)anthracene	0.054	ug/l	1	-	U	Yes
Benzo(a)pyrene	0.054	ug/l	1	-	Ü	Yes
Benzo(b)fluoranthene	0.11	ug/l	1	-	Ü	Yes
Benzo(k)fluoranthene	0.11	ug/l	1		Ü	Yes
Chrysene	0.11	ug/l	1	-	Ü	Yes
Dibenzo(a,h)anthracene	0.11	ug/l	1		Ü	Yes
Indeno(1,2,3-cd)pyrene	0.11	ug/l	1		Ü	Yes
Naphthalene	0.11	ug/l	1	-	Ü	Yes
1,4-Dioxane	0.11	ug/l	1	-	Ü	Yes
_,		٠ بې -			_	

. .

Sample location: BMSMC Building 5 Area

Sampling date: 12/7/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	33.8	ug/l	1	-	•	Yes
4-Chloro-3-methyl phenol	40.0	ug/l	1	-	-	Yes
2,4-Dichlorophenol	40.2	ug/l	1	_	-	Yes
2,4-Dimethylphenol	44.9	ug/l	1	-	_	Yes
2,4-Dinitrophenol	97	ug/l	1	-	-	Yes
4,6-Dinitro-o-cresol	47.5	ug/l	1	-	-	Yes
2-Methylphenol	34.4	ug/l	1	-	_	Yes
3&4-Methylphenol	32.6	ug/l	1	-	-	Yes
2-Nitrophenol	39.6	ug/l	1	-	-	Yes
4-Nitrophenol	15.6	ug/l	1	-	-	Yes
Pentachlorophenol	50.4	ug/l	1	-	-	Yes
Phenol	22.4	ug/l	_ 1	-	-	Yes
2,3,4,6-Tetrachlorophenol	45.9	ug/l	1	-	-	Yes
2,4,5-Trichlorophenol	42.4	ug/l	1	-	-	Yes
2,4,6-Trichlorophenol	45.1	ug/l	1	-	-	Yes
Acenaphthene	40.1	ug/l	1	-	-	Yes
Acenaphthylene	39.2	ug/l	1	-	-	Yes
Acetophenone	38.5	ug/l	1	-	-	Yes
Anthracene	40.3	ug/l	1	-	-	Yes
Atrazine	52.2	ug/l	1	-	-	Yes
Benzaldehyde	31.6	ug/l	1	-	-	Yes
Benzo(a)anthracene	41.3	ug/l	1	-	-	Yes
Benzo(a)pyrene	37.7	ug/l	1	-	-	Yes
Benzo(b)fluoranthene	37.9	ug/l	1	-	-	Yes
Benzo(g,h,i)perylene	39.4	ug/l	1	-	-	Yes
Benzo(k)fluoranthene	41.1	ug/l	1	-	-	Yes
4-Bromophenyl phenyl ether	45.8	ug/l	1	-	-	Yes
Butyl benzyl phthalate	31.9	ug/l	1	-	-	Yes
1,1'-Biphenyl	40.5	ug/l	1	-	-	Yes
2-Chloronaphthalene	42.8	ug/l	1	-	-	Yes
4-Chloroaniline	23.8	ug/l	1	-	-	Yes
Carbazole	41.0	ug/i	1	-	-	Yes
Caprolactam	14.2	ug/l	1	-	-	Yes
Chrysene	41.2	ug/l	1	-	-	Yes
bis(2-Chloroethoxy)methane	51.0	ug/l	1	-	-	Yes
bis(2-Chloroethyl)ether	51.5	ug/l	1	-	-	Yes
bis(2-Chloroisopropyl)ether	37.9	ug/l	1	-	-	Yes

4-Chlorophenyl phenyl ether	46.4	ug/l	1		2	Yes
2,4-Dinitrotoluene	44.5	ug/l	1	_	_	Yes
2,6-Dinitrotoluene	44.0	ug/l	1	-	-	Yes
3,3'-Dichlorobenzidine	40.9	ug/l	1	2	2	Yes
Dibenzo(a,h)anthracene	40.1	ug/l	1	_	-	Yes
Dibenzofuran	41.8	ug/l	1		-	Yes
Di-n-butyl phthalate	36.1	ug/l	1	23	2	Yes
Di-n-octyl phthalate	32.7	ug/l	1	-	-	Yes
Diethyl phthalate	38.1	ug/l	1	-	-	Yes
Dimethyl phthalate	42.5	ug/l	1	2	_	Yes
bis(2-Ethylhexyl)phthalate	33.1	ug/l	1	*		Yes
Fluoranthene	44.4	ug/l	1	7.		Yes
Fluorene	40.8	ug/l	1	2	22	Yes
Hexachlorobenzene	44.1	ug/l	1	-	-	Yes
Hexachlorobutadiene	38.1	ug/l	1	-	10.70	Yes
Hexachlorocyclopentadiene	46.5	ug/l	1	2	-	Yes
Hexachloroethane	37.0	ug/l	1	•	-	Yes
Indeno(1,2,3-cd)pyrene	39.7	ug/l	1	-	-	Yes
Isophorone	43.7	ug/l	1	4	-	Yes
1-Methylnaphthalene	38.1	ug/l	1	-	-	Yes
2-Methylnaphthalene	38.9	ug/l	1	-	-	Yes
2-Nitroaniline	43.1	ug/l	1	-	-	Yes
3-Nitroaniline	26.8	ug/l	1	-		Yes
4-Nitroaniline	43.3	ug/l	1	-	-	Yes
Nitrobenzene	43.6	ug/l	1	(*)	-	Yes
N-Nitroso-di-n-propylamine	38.2	ug/l	1	-	-	Yes
Nitrosodiphenylamine	38.1	ug/l	1	923	-	Yes
Phenanthrene	44.3	ug/l	1	-	-	Yes
Pyrene	40.7	ug/l	1		1.7	Yes
1,2,4,5-Tetrachlorobenzene	47.7	ug/l	1	-	-	Yes
METHOD:	8270D (SII	M)				
Benzo(a)anthracene	0.924	ug/l	1	121		Yes
Benzo(a)pyrene	0.640	ug/l	1		-	Yes
Benzo(b)fluoranthene	0.840	ug/l	1	-	-	Yes
Benzo(k)fluoranthene	0.741	ug/l	1	-	_	Yes
Chrysene	0.775	ug/l	1	7-0		Yes
Dibenzo(a,h)anthracene	0.452	ug/l	1	_		Yes
Indeno(1,2,3-cd)pyrene	0.552	ug/l	1	-		Yes
Naphthalene	0.715	ug/l	1			Yes
1,4-Dioxane	1.84	ug/l	1	-	_	Yes
		-				

Sample location: BMSMC Building 5 Area

Sampling date: 12/7/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	37.6	ug/l	1	-	-	Yes
4-Chloro-3-methyl phenol	47.2	ug/l	1	-	-	Yes
2,4-Dichlorophenol	47.6	ug/l	1	-	-	Yes
2,4-Dimethylphenol	52.0	ug/l	1	-	-	Yes
2,4-Dinitrophenol	114	ug/l	1	-	-	Yes
4,6-Dinitro-o-cresol	56.5	ug/l	1	-	-	Yes
2-Methylphenol	36.2	ug/l	1	-	-	Yes
3&4-Methylphenol	35.3	ug/l	1	-	_	Yes
2-Nitrophenol	47.0	ug/l	1	-	-	Yes
4-Nitrophenol	18.2	ug/l	1	-	-	Yes
Pentachlorophenol	59.1	ug/l	1	-	-	Yes
Phenol	24.5	ug/l	1	-	-	Yes
2,3,4,6-Tetrachlorophenol	52.8	ug/l	1	-	-	Yes
2,4,5-Trichlorophenol	49.2	ug/l	1	-	-	Yes
2,4,6-Trichlorophenol	50.5	ug/l	1	-	-	Yes
Acenaphthene	45.4	ug/l	1	-	-	Yes
Acenaphthylene	44.7	ug/l	1	-	-	Yes
Acetophenone	42.9	ug/l	1	•	-	Yes
Anthracene	49.0	ug/l	1	-	-	Yes
Atrazine	61.5	ug/l	1	-	-	Yes
Benzaldehyde	36.5	ug/l	1	-	-	Yes
Benzo(a)anthracene	49.6	ug/l	1	-	-	Yes
Benzo(a)pyrene	45.5	ug/l	1	-	-	Yes
Benzo(b)fluoranthene	45.7	ug/l	1	-	-	Yes
Benzo(g,h,i)perylene	49.1	ug/i	1	-	-	Yes
Benzo(k)fluoranthene	48.5	ug/l	1	-	-	Yes
4-Bromophenyl phenyl ether	55.4	ug/l	1	-	-	Yes
Butyl benzyl phthalate	38.8	ug/l	1	-	-	Yes
1,1'-Biphenyl	46.3	ug/l	1	-	-	Yes
2-Chloronaphthalene	47.5	ug/l	1	-	-	Yes
4-Chloroaniline	30.2	ug/l	1	-	-	Yes
Carbazole	49.9	ug/l	1	-	-	Yes
Caprolactam	16.4	ug/l	1	-	-	Yes
Chrysene	49.4	ug/l	1	-	-	Yes
bis(2-Chloroethoxy)methane	58.3	ug/l	1	-	-	Yes
bis(2-Chloroethyl)ether	57.3	ug/l	1	-	-	Yes

bis(2-Chloroisopropyl)ether	41.9	ug/l	1	_	-	Yes
4-Chlorophenyl phenyl ether	52.5	ug/l	1	_		Yes
2,4-Dinitrotoluene	52.8	ug/l	1	-	-	Yes
2,6-Dinitrotoluene	52.9	ug/l	1	-	-	Yes
3,3'-Dichlorobenzidine	56	ug/l	1	_	_	Yes
Dibenzo(a,h)anthracene	49.8	ug/l	1	-	-	Yes
Dibenzofuran	49.0	ug/l	1			Yes
Di-n-butyl phthalate	44.0	ug/l	1	-	-	Yes
Di-n-octyl phthalate	38.2	ug/l	1	•	-	Yes
Diethyl phthalate	44.2	ug/l	1	-	4	Yes
Dimethyl phthalate	48.1	ug/l	1	_	4	Yes
bis(2-Ethylhexyl)phthalate	39.1	ug/l	1	-	-	Yes
Fluoranthene	52.6	ug/l	1	2	-	Yes
Fluorene	46.8	ug/l	1	-	-	Yes
Hexachlorobenzene	51.3	ug/l	1	-	-	Yes
Hexachlorobutadiene	43.9	ug/l	1	-	-	Yes
Hexachlorocyclopentadiene	55.3	ug/l	1	-	-	Yes
Hexachloroethane	42.2	ug/l	1	-	-	Yes
Indeno(1,2,3-cd)pyrene	51.0	ug/l	1	2	_	Yes
Isophorone	49.1	ug/l	1	-	-	Yes
1-Methylnaphthalene	44.2	ug/l	1	21	-	Yes
2-Methylnaphthalene	45.1	ug/l	1	21	-	Yes
2-Nitroaniline	48.5	ug/l	1	-	-	Yes
3-Nitroaniline	33.8	ug/i	1	7.	-	Yes
4-Nitroaniline	47.6	ug/l	1	2		Yes
Nitrobenzene	47.8	ug/l	1	*	*	Yes
N-Nitroso-di-n-propylamine	42.6	ug/l	1	7.0		Yes
Nitrosodiphenylamine	46.1	ug/l	1	2	-	Yes
Phenanthrene	53.4	ug/l	1	= 1	-	Yes
Pyrene	49.0	ug/l	1	-	-	Yes
1,2,4,5-Tetrachlorobenzene	53.2	ug/l	1	2	_	Yes
METHOD:	8270D (SII	M)				
Benzo(a)anthracene	1.06	ug/l	1	40	-	Yes
Benzo(a)pyrene	0.745	ug/l	1	70 -s	-	Yes
Benzo(b)fluoranthene	0.910	ug/l	1	-	-	Yes
Benzo(k)fluoranthene	1.03	ug/l	1	-	240	Yes
Chrysene	0.901	ug/l	1	-		Yes
Dibenzo(a,h)anthracene	0.609	ug/l	1	2	3.2	Yes
Indeno(1,2,3-cd)pyrene	0.744	ug/l	1	-	-	Yes
Naphthalene	0.828	ug/l	1	-	7.7	Yes
1,4-Dioxane	1.85	ug/l	1		-	Yes
		_				

	Project Number:_JC33384
	Date:December_6-7,_2016
	Shipping Date:December_8,_2016
	EPA Region: 2
REVIEW OF SEMIVOLATILE (ORGANIC PACKAGE
The following guidelines for evaluating volatile organization actions. This document will assist the remake more informed decision and in better serving results were assessed according to USEPA data following order of precedence: EPA Hazardous V 2015 –Revision 0. Semivolatile Data Validation. The Q on the data review worksheets are from the prima noted.	eviewer in using professional judgment to g the needs of the data users. The sample a validation guidance documents in the Vaste Support Section, SOP HW-35A, July C criteria and data validation actions listed
The hardcopied (laboratory name) _Accutest reviewed and the quality control and performance da included:	
Lab. Project/SDG No.:JC33384 No. of Samples:11_SIM/11_SCAN	Sample matrix:Groundwater
Trip blank No.:	
Equipment blank No.:JC33384-1;_JC33384-4_	
Field duplicate No.:	
X Data Completeness	X Laboratory Control Spikes
X Holding Times	X Field Duplicates
X GC/MS Tuning	X Calibrations
X Internal Standard Performance	X Compound Identifications
X Blanks	X Compound Quantitation
X Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate	X Quantitation Limits
·	
_Overall Comments:_SVOCs_TCL_special_list_analyzed _and_1,4-Dioxane_analyzed_by_method_SW846-8270D	
Definition of Qualifiers:	A TOTAL STATE OF THE STATE OF T
J- Estimated results	
U- Compound not detected	
R- Rejected data	
UJ- Estimated nondetect	
Reviewer: 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
DateJanuary_13,_2011	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTA	CTED	DATE RECEIVED
		50.20	
1			
			
1			
	P.:		
	1		
	No.		
		_/	
		- A	
		- //	
	2		
			Á.

All criteria were met_	X
Criteria were not met	
and/or see below	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE	DATE	pН	ACTION
	SAMPLED	EXTRACTED/ANALYZED		
JC33384-1	12/6/16	12/15/16	-	No action
JC33384-3	12/6/16	12/15/16	-	No action
All samples extracted and analyzed within method recommended holding time except for the samples				
described in this document. The following samples were extracted outside of holding time for method				
SW846 8270D: JC33384-1, JC33384-3. No action taken, confirmation run.				
Cooler temperature (Criteria: 4 ± 2 °C):5.2°C				

Actions

Results will be qualified based on the criteria of the following Table:

Table 1. Holding Time Actions for Semivolatile Analyses

			Action		
Matrix	Preserved	Criteria	Detected Associated Compounds	Non-Detected Associated Compounds	
	No	≤7 days (for extraction) ≤40 days (for analysis)	Use professional judgment		
	No	> 7 days (for extraction) > 40 days (for analysis)	J	Use professional judgment	
Aqueous	Yes	≤7 days (for extraction) ≤40 days (for analysis)	No qualification		
	Yes	> 7 days (for extraction) > 40 days (for analysis)	J	ບນ	
	Yes/No	Grossly Exceeded	J	UJ or R	
	No	≤14 days (for extraction) ≤40 days (for analysis)	Use profession	onal judgment	
Non Aguagua	No	> 14 days (for extraction) > 40 days (for analysis)	J	Use professional judgment	
Non-Aqueous	Yes	≤ 14 days (for extraction) ≤ 40 days (for analysis)			
	Yes	> 14 days (for extraction) > 40 days (for analysis)	J	UJ	
	Yes/No	Grossly Exceeded	J	UJ or R	

			Crite	All criteria were metX ria were not met see below
GC/MS	TUNING	3		
	sessmer QC limits	nt of the tuning results is to determine	ne if the sample instrumentatior	n is within the standard
_X	The DF	TPP performance results were revi	ewed and found to be within the	e specified criteria.
_X	DFTPP	tuning was performed for every 12	hours of sample analysis.	
lf no, u or rejec		ssional judgment to determine whe	her the associated data should	be accepted, qualified
	Notes:	These requirements do not appl Monitoring (SIM) technique.	y when samples are analyzed	by the Selected Ion
	Notes:	All mass spectrometer conditions analysis. Background subtracti unacceptable No data should be qualified based	on actions resulting in sp	•
		The requirement to analyze the insanalysis of PAHs/pentachloropher	•	•
List		the	samples	affected:

Actions:

- 1. If sample are analyzed without a preceding valid instrument performance check or are analyzed 12 hours after the Instrument Performance Check, qualify all data in those samples as unusable (R).
- 2. If ion abundance criteria are not met, use professional judgment to determine to what extent the data may be utilized.
- 3. State in the Data Review Narrative, decisions to use analytical data associated with DFTPP instrument performance checks not meeting the contract requirements.
- 4. Use professional judgment to determine if associated data should be qualified based on the spectrum of the mass calibration compounds.

All criteria were met _	_X
Criteria were not met	
and/or see below	

INITIAL CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:10/18/16_(SIM) Instrument ID numbers:GCMS3P Matrix/Level:Aqueous/low					11/21/16_(SIM) GCMS4P Aqueous/low		
Date of initial calibration:_12/08/16_(SCAN) Instrument ID numbers:GCMS3E Matrix/Level:Aqueous/low					11/18/16_(SCAN) GCMS6P Aqueous/low		
Date of initial calibration:_11/28-29/16_(SCAN) Instrument ID numbers:GCMSP Matrix/Level:Aqueous/low				11/22/16_(SCAN) GCMSM Aqueous/low			
DATE LAB FILE CRITERIA OUT (ID# RFs, %RSD, %D, r		COMPOU	ND	SAMPLES AFFECTED			
Initial	and initia	ıl calib	ration verification mee	ts the meth		lidation document	
	I						

Actions:

Note:

Qualify the initial calibration analytes listed in Table 2 using the following criteria:

Table 3. Initial Calibration Actions for Semivolatile Analysis

Criteria	Action		
Спіспа	Detect	Non-detect	
Initial Calibration not performed at specified frequency and sequence	Use professional judgment R	Use professional judgment R	
Initial Calibration not performed at the specified concentrations	J	UJ	
RRF < Minimum RRF in Table 2 for target analyte	Use professional judgment J+ or R	R	
RRF ≥ Minimum RRF in Table 2 for target analyte	No qualification	No qualification	
%RSD > Maximum %RSD in Table 2 for target analyte	J	Use professional judgment	
%RSD ≤ Maximum %RSD in Table 2 for target analyte	No qualification	No qualification	

Initial Calibration

Table 2. RRF, %RSD, and %D Acceptance Criteria in Initial Calibration and CCV for Semivolatile Analysis

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D ¹
1,4-Dioxane	0.010	40.0	± 40.0	± 50.0
Benzaldehyde	0.100	40.0	± 40.0	± 50.0
Phenol	0.080	20.0	±20.0	± 25.0
Bis(2-chloroethyl)ether	0.100	20.0	± 20.0	± 25.0
2-Chlorophenol	0.200	20.0	± 20.0	± 25.0
2-Methylphenol	0.010	20.0	± 20.0	± 25.0
3-Methylphenol	0.010	20.0	±20.0	± 25.0
2,2'-Oxybis-(1-chloropropane)	0.010	20.0	± 25.0	± 50.0
Acetophenone	0.060	20.0	±20.0	± 25.0
4-Methylphenol	0.010	20.0	±20.0	±25.0
N-Nitroso-di-n-propylamine	0.080	20.0	±25.0	±25.0
Hexachloroethane	0.100	20.0	± 20.0	±25.0
Nitrobenzene	0.090	20.0	± 20.0	±25.0
Isophorone	0.100	20.0	± 20.0	±25.0
2-Nitrophenol	0.060	20.0	±20.0	±25.0
2,4-Dimethylphenol	0.050	20.0	± 25.0	± 50.0
Bis(2-chloroethoxy)methane	0.080	20.0	± 20.0	± 25.0
2,4-Dichlorophenol	0.060	20.0	±20.0	±25.0
Naphthalene	0.200	20.0	± 20.0	± 25.0
4-Chloroaniline	0.010	40.0	± 40.0	± 50.0
Hexachlorobutadiene	0.040	20.0	± 20.0	±25.0
Caprolactam	0.010	40.0	± 30.0	± 50.0
4-Chloro-3-methylphenol	0.040	20.0	± 20.0	±25.0
2-Methylnaphthalene	0.100	20.0	± 20.0	±25.0
Hexachlorocyclopentadiene	0.010	40.0	± 40.0	± 50.0
2,4,6-Trichlorophenol	0.090	20.0	± 20.0	± 25.0
2,4,5-Trichlorophenol	0.100	20.0	± 20.0	±25.0
1,1'-Biphenyl	0.200	20.0	± 20.0	± 25.0
		_		

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D ¹
2-Chloronaphthalene	0.300	20.0	±20.0	±25.0
2-Nitroaniline	0.060	20.0	±25.0	± 25.0
Dimethylphthalate	0.300	20.0	±25.0	±25.0
2,6-Dinitrotoluene	0.080	20.0	± 20.0	± 25.0
Acenaphthylene	0.400	20.0	± 20.0	±25.0
3-Nitroaniline	0.010	20.0	± 25.0	± 50.0
Acenaphthene	0.200	20.0	±20.0	±25.0
2,4-Dinitrophenol	0.010	40.0	± 50.0	± 50.0
4-Nitrophenol	0.010	40.0	± 40.0	± 50.0
Dibenzofuran	0.300	20.0	± 20.0	± 25.0
2,4-Dinitrotoluene	0.070	20.0	± 20.0	± 25.0
Diethylphthalate	0.300	20.0	± 20.0	± 25.0
1,2,4,5-Tetrachlorobenzene	0.100	20.0	± 20.0	± 25.0
4-Chlorophenyl-phenylether	0.100	20.0	±20.0	± 25.0
Fluorene	0.200	20.0	± 20.0	± 25.0
4-Nitroaniline	0.010	40.0	± 40.0	± 50.0
4,6-Dinitro-2-methylphenol	0.010	40.0	±30.0	± 50.0
4-Bromophenyl-phenyl ether	0.070	20.0	±20.0	±25.0
N-Nitrosodiphenylamine	0.100	20.0	±20.0	± 25.0
Hexachlorobenzene	0.050	20.0	±20.0	±25.0
Atrazine	0.010	40.0	±25.0	± 50.0
Pentachlorophenol	0.010	40.0	±40.0	± 50.0
Phenanthrene	0.200	20.0	± 20.0	± 25.0
Anthracene	0.200	20.0	±20.0	± 25.0
Carbazole	0.050	20.0	± 20.0	± 25.0
Di-n-butylphthalate	0.500	20.0	± 20.0	± 25.0
Fluoranthene	0.100	20.0	± 20.0	±25.0
Pyrene	0.400	20.0	±25.0	± 50.0
Butylbenzylphthalate	0.100	20.0	±25.0	± 50.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D ¹
3,3'-Dichlorobenzidine	0.010	40.0	± 40.0	± 50.0
Benzo(a)anthracene	0.300	20.0	±20.0	± 25.0
Chrysene	0.200	20.0	± 20.0	± 50.0
Bis(2-ethylhexyl) phthalate	0.200	20.0	±25.0	± 50.0
Di-n-octylphthalate	0.010	40.0	± 40.0	± 50.0
Benzo(b)fluoranthene	0.010	20.0	±25.0	± 50.0
Benzo(k)fluoranthene	0.010	20.0	±25.0	± 50.0
Benzo(a)pyrene	0.010	20.0	±20.0	± 50.0
Indeno(1,2,3-cd)pyrene	0.010	20.0	±25.0	± 50.0
Dibenzo(a,h)anthracene	0.010	20.0	±25.0	± 50.0
Benzo(g,h,i)perylene	0.010	20.0	± 30.0	± 50.0
2,3,4,6-Tetrachlorophenol	0.040	20.0	± 20.0	± 50.0
Naphthalene	0.600	20.0	± 25.0	± 25.0
2-Methylnaphthalene	0.300	20.0	± 20.0	±25.0
Acenaphthylene	0.900	20.0	± 20.0	±25.0
Acenaphthene	0.500	20.0	± 20.0	± 25.0
Fluorene	0.700	20.0	±25.0	± 50.0
Phenanthrene	0.300	20.0	±25.0	± 50.0
Anthracene	0.400	20.0	± 25.0	± 50.0
Fluoranthene	0.400	20.0	± 25.0	± 50.0
Pyrene	0.500	20.0	± 30.0	± 50.0
Benzo(a)anthracene	0.400	20.0	±25.0	± 50.0
Chyrsene	0.400	20.0	±25.0	± 50.0
Benzo(b)fluoranthene	0.100	20.0	±30.0	± 50.0
Benzo(k)fluoranthene	0.100	20.0	±30.0	± 50.0
Benzo(a)pyrene	0.100	20.0	±25.0	± 50.0
Indeno(1,2,3-cd)pyrene	0.100	20.0	± 40.0	± 50.0
Dibenzo(a,h)anthracene	0.010	25.0	± 40.0	± 50.0
Benzo(g,h,i)perylene	0.020	25.0	± 40.0	± 50.0

Pentachlorophenol	0.010	40.0	± 50.0	± 50.0	
Deuterated Monitoring Compounds					

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D¹	Closing Maximum %D
1,4-Dioxane-d ₈	0.010	20.0	±25.0	± 50.0
Phenol-d ₃	0.010	20.0	±25.0	±25.0
Bis-(2-chloroethyl)ether-d ₈	0.100	20.0	±20.0	±25.0
2-Chlorophenol-d4	0.200	20.0	±20.0	±25.0
4-Methylphenol-d ₈	0.010	20.0	±20.0	±25.0
4-Chloroaniline-d4	0.010	40.0	± 40.0	± 50.0
Nitrobenzene-d ₅	0.050	20.0	±20.0	±25.0
2-Nitrophenol-d ₄	0.050	20.0	±20.0	±25.0
2,4-Dichlorophenol-d ₃	0.060	20.0	± 20.0	±25.0
Dimethylphthalate-d ₆	0.300	20.0	±20.0	±25.0
Acenaphthylene-d ₈	0.400	20.0	±20.0	±25.0
4-Nitrophenol-d₄	0.010	40.0	±40.0	± 50.0
Fluorene-d ₁₀	0.100	20.0	± 20.0	±25.0
4,6-Dinitro-2-methylphenol-d2	0.010	40.0	± 30.0	± 50.0
Anthracene-d ₁₀	0.300	20.0	± 20.0	±25.0
Pyrene-d ₁₀	0.300	20.0	±25.0	± 50.0
Benzo(a)pyrene-d ₁₂	0.010	20.0	± 20.0	± 50.0
Fluoranthene-d ₁₀ (SIM)	0.400	20.0	±25.0	± 50.0
2-Methylnaphthalene-d ₁₀ (SIM)	0.300	20.0	± 20.0	±25.0

¹ If a closing CCV is acting as an opening CCV, all target analytes must meet the requirements for an opening CCV.

Note: If analysis by SIM technique is requested for PAH/pentachlorophenols, calibration standards analyzed at 0.10, 0.20, 0.40, 0.80, and 1.0 ng/uL for each target compound of interest and the associated DMCs. Pentachlorophenol will require only a four point initial calibration at 0.20, 0.40, 0.80, and 1.0 ng/uL.

All criteria were met	
Criteria were not met	
and/or see below	_X

CONTINUING CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	10/18/16_(SIM)	11/21/16_(SIM)
Date of initial calibration verificat	ion (ICV):10/19/16	11/21-22/16
Date of continuing calibration ve	rification (CCV):_12/14/16;_12/17/16	12/15/16;_12/21/16
Date of closing CCV:	<u> </u>	
	GCMS3P	GCMS4P
Matrix/Level:	Aqueous/low	Aqueous/low
Date of initial calibration:	11/28-29/16_(Scan)	11/18/16_(Scan)
	ion (ICV):_11/29/306	
	rification (CCV):_12/14/16;_12/23/16	12/14/16
Date of closing CCV:		·
Instrument ID numbers:	GCMSP	GCMS6P
	Aqueous/low	
Date of initial calibration:	12/08/16_(Scan)	11/22/16_(Scan)
Date of initial calibration verificat	ion (ICV):_12/08-09/16	11/22/16;_11/28/16
	rification (CCV):_12/15/16	12/15/16;_12/16/16
Date of closing CCV:	•	<u> </u>
Instrument ID numbers:	GCM3E	GCMSM
Matrix/Level:	Aqueous/low	Aqueous/low

DATE	LAB FILE ID#	CRITERIA OUT RFs, %RSD, %D , r	COMPOUND	SAMPLES AFFECTED
GCMS3E				
12/15/16	cc3946-25	-20.8	2, 4-dinitrophenol*	JC33384-2
		-20.3 ✓	Pyrene*]
12/15/16	cc3946-50	-21.9 ✓	Indeno(1,2,3-cd)pyrene*]
		-22.3 ✓	Debenzo(a,h)anthracene*	
		-23.7 ✓	Benzo(g,h,i)perylene*	
GCMS3P				
12/14/16	cc2579-0.5	-42.3 ✓	Dibenzo(a,h)anthracene	JC33384-1; to -3
		-36.0 ✓	Benzo(b)fluoranthene	
12/17/16	cc2579-1.0	-20.1 ✓	Benzo(a)anthracene*	JC33384-4; -5; -7;
		-26.4	Benzo(b)fluoranthene*] -8; -9
		· -22.8 ✓	Indeno(1,2,3-cd)pyrene*	
		- 26.6 √	Dibenzo(a,h)anthracene*	
GCMS4P				
12/15/16	cc1064-0.5	-21.1	Didenzo(a,h)anthracene*	QC sample
12/15/16	cc1064-1.0	-21.7 ✓	Benzo(b)fluoranthene*	JC33384-6

DATE	LAB FILE	CRITERIA OUT	COMPOUND	SAMPLES
	ID#	RFs, %RSD, <u>%D</u> , r		AFFECTED
GCMS6P				
12/14/16	cc1488-50	-20.1 ✓	Hexachlorocyclopentadiene*	JC33384-1; -2; -3
		-23.0 ✓	2-nitroaniline*	
		-40.6	4-nitrophenol	
12/14/16	cc1489-50	23.0 ✓	Benzaldehyde*	JC33384-1; -2; -3
GCMSM				
12/15/16	cc5525-50	26.5	Hexachlorocyclopentadiene*	JC33384-4 to -9
		26.7 ✓	4-nitrophenol*	
		-22.1	2,3,4,6-tetrachlorophenol	
		21.6 ✓	bis(2-ethylhexyl)phthalate*	

Note: Initial and continuing calibration verifications meet the method and guidance document required performance criteria except for the cases described in this document. Results qualified as estimated (J or UJ) in affected samples.

* % difference outside was method performance criteria but within the guidance document performance criteria. No action taken.

No action taken for QC samples.

No closing calibration verification included in data package. No action taken, professional judgment.

Actions:

Notes: Verify that the CCV is run at the required frequency (an opening and closing CCV must be run within 12-hour period).

All DMCs must meet the RRF values given in Table 2. No qualification of the data is necessary on DMCs RRF and %RSD/%D alone. Use professional judgment to evaluate DMCs and %RSD/%D data in conjunction with DMCs recoveries to determine the need for qualification of the data.

Qualify the initial calibration analytes listed in Table 2 using the following criteria in the CCVs:

Table 4. CCV Actions for Semivolatile Analysis

Caltada for Ossalas CCV	Criteria for Clasica CCV	Action		
Criteria for Opening CCV	Criteria for Closing CCV ~	Detect	Non-detect	
CCV not performed at required frequency and sequence	CCV not performed at required frequency	Use professional judgment R	Use professional judgment R	
CCV not performed at specified concentration	CCV not performed at specified concentration	Use professional judgment	Use professional judgment	
RRF < Minimum RRF in Table 2 for target analyte	RRF < Minimum RRF in Table 2 for target analyte	Use professional judgment J or R	R	
RRF ≥ Minimum RRF in Table 2 for target analyte	RRF ≥ Minimum RRF in Table 2 for target analyte	No qualification	No qualification	
%D outside the Opening Maximum %D limits in Table 2 for target analyte	%D outside the Closing Maximum %D limits in Table 2 for target analyte	J	נט	
%D within the inclusive Opening Maximum %D limits in Table 2 for target analyte	%D within the inclusive Closing Maximum %D limits in Table 2 for target analyte	No qualification	No qualification	

All criteria were met _	
Criteria were not met	
and/or see below	_X

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Notes: The concentration of non-target compounds in all blanks must be less than or equal to 10 ug/L.

The concentration of target compounds in all blanks must be less than its CRQL listed in the method.

Samples taken from a drinking water tap do not have and associated field blank.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_target_an	 alytes_detected_in	_method_bla	nks_except_in_the_cas	es_described_in_this_document.
				nthalate4.2_ug/L nthalate4.7_ug/L
Note:	No action taken, the analyte was n			mon laboratory contaminant and
Field/Equipme	ent/Trip blank			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_target_an	alytes_detected_in	_the_field/ed	uipment_blanks_analyz	ed_with_this_data_package
				<u> </u>

Note:

All criteria were met	X
Criteria were not met	
and/or see below	

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Qualify samples based on the criteria summarized in Table 5:

Table 5. Blank and TCLP/SPLP LEB Actions for Semivolatile Analysis

Blank Type	Blank Result	Sample Result	Action
	Detect	Non-detect	No qualification
	< CRQL	< CRQL	Report at CRQL and qualify as non-detect (U)
		≥ CRQL	Use professional judgment
		< CRQL	Report at CRQL and qualify as non-detect (U)
Method,	≥CRQL	≥ CRQL but < Blank Result	Report at sample results and qualify as non-detect (U) or as unusable (R)
TCLP/SPLP LEB, Field		≥ CRQL and ≥ Blank Result	Use professional judgment
	Grossly high	Detect	Report at sample results and qualify as unusable (R)
	TIC > 5.0 ug/L (water) or 0.0050 mg/L (TCLP leachate) or TIC > 170 ug/Kg (soil)	Detect	Use professional judgment

List samples qualified

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
					l
			 		
-		 			

All criteria were met _	_X_	
Criteria were not met		
and/or see below	_	

SURROGATE SPIKE RECOVERIES - DEUTERATED MONITORING COMPOUNDS (DMCs)

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries – deuterated monitoring compounds. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

Notes: Recoveries for DMCs in samples and blanks must be within the limits specified in Table 6.

The recovery limits for any of the compounds listed in Table 6 may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive.

If a DMC is not added in the samples and blanks or the concentrations of DMCs in the samples and blank not the specified, use professional judgment in qualifying the data.

Table 7. DMC Actions for Semivolatile Analysis

	Action	
Criteria	Detect	Non-detect
%R < 10% (excluding DMCs with 10% as a lower acceptance limit)	J-	R
10% ≤ %R (excluding DMCs with 10% as a lower acceptance limit) < Lower Acceptance Limit	J-	UJ
Lower Acceptance limit ≤%R ≤ Upper Acceptance Limit	No qualification	No qualification
%R > Upper Acceptance Limit	J+	No qualification

List the percent recoveries (%Rs) which do not meet the criteria for DMCs (surrogate) recovery.			
Matrix:Groundwater			
SAMPLE ID	SURROGATE COMPOUND	ACTION	
_DMCs_meet_the_required_criteria_in_all_samples_analyzedNondeuterated_surrogatesadded_to_the_samples_and_were_within_laboratory_recovery_limits			

Note:

⁽a) Outside control limits due to matrix interference.

⁽b) Outside in house control limits biased low. The results confirmed by re-extraction outside the holding time.

Table 8. Semivolatile DMCs and the Associated Target Analytes

1,4-Dioxane-ds (DMC-1)	Phenol-d ₅ (DMC-2)	Bis(2-Chloroethyl) ether-d ₈ (DMC-3)
1,4-Dioxane	Benzaldehyde	Bis(2-chloroethyl)ether
1,4-Dioxane	Phenol	2,2'-Oxybis(1-chloropropane)
	i nenoi	Bis(2-chloroethoxy)methane
2 511 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	414 41 41 41 41 41 41 41 41 41	
2-Chlorophenol-d ₄ (DMC-4)	4-Methylphenol-da (DMC-5)	4-Chloroaniline-d ₄ (DMC-6)
2-Chlorophenol	2-Methylphenol	4-Chloroaniline
	3-Methylphenol	Hexachforocyclopentadiene
	4-Methylphenol	Dichlorobenzidine
	2,4-Dimethylphenol	
Nitrobenzene-d5(DMC-7)	2-Nitrophenol-d4 (DMC-8)	2,4-Dichlorophenol-d3 (DMC-9)
Acetophenone	Isophorone	2,4-Dichlorophenol
N-Nitroso-di-n-propylamine	2-Nitrophenol	Hexachlorobutadiene
Hexachloroethane		Hexachlorocyclopentadiene
Nitrobenzene		4-Chloro-3-methylphenol
2,6-Dinitrotoluene		2,4,6-Trichlorophenol
2,4-Dinitrotoluene		2,4,5-Trichlorophenol
N-Nitrosodiphenylamine		1,2,4,5-Tetrachlorobenzene
· ·		*Pentachlorophenol
		2,3,4,6-Tetrachlorophenol
Dimethylphthalate-d ₆ (DMC-10)	Acenaphthylene-da (DMC-11)	4-Nitrophenol-d ₄ (DMC-12)
Caprolactam	*Naphthalene	2-Nitroaniline
1,1'-Biphenyl	*2-Methylnaphthalene	3-Nitroaniline
Dimethylphthalate	2-Chloronaphthalene	2,4-Dinitrophenol
Diethylphthalate	*Acenaphthylene	4-Nitrophenol
Di-n-butylphthalate	*Acenaphthene	4-Nitroaniline
Butylbenzylphthalate		
Bis(2-ethylhexyl) phthalate		
Di-n-octylphthalate		

Fluorene-d ₁₀ (DMC-13)	4,6-Dinitro-2-methylphenol-d ₂ (DMC-14)	Anthracene-d ₁₀ (DMC-15)
Dibenzofuran *Fluorene	4,6-Dinitro-2-methylphenol	Hexachlorobenzene Atrazine
4-Chlorophenyl-phenylether		*Phenanthrene
4-Bromophenyl-phenylether		*Anthracene
Carbazole		
Pyrene-d ₁₀ (DMC-16)	Benzo(a)pyrene-d ₁₂ (DMC-17)	
*Fluoranthene	3,3'-Dichlorobenzidine	-
*Pyrene	*Benzo(b)fluoranthene	
*Benzo(a)anthracene	*Benzo(k)fluoranthene	
*Chrysene	*Benzo(a)pyrene	
	*Indeno(1,2,3-cd)pyrene	
	*Dibenzo(a,h)anthracene	
	*Benzo(g,h,i)perylene	

^{*}Included in optional Target Analyte List (TAL) of PAHs and PCP only.

Table 9. Semivolatile SIM DMCs and the Associated Target Analytes

Fluoranthene-d10 (DMC-1)	2-Methylnaphthalene-d10 (DMC-2)
Fluoranthene	Naphthalene
Pyrene	2-Methylnaphthalene
Benzo(a)anthracene	Acenaphthylene
Chrysene	Acenaphthene
Benzo(b)fluoranthene	Fluorene
Benzo(k)fluoranthene	Pentachlorophenol
Benzo(a)pyrene	Phenanthrene
Indeno(1,2,3-cd)pyrene	Anthracene
Dibenzo(a,h)anthracene	
Benzo(g,h,i)perylene	

All criteria were met _	
Criteria were not met	
and/or see below	_X

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

NOTES:

Data for MS and MSDs will not be present unless requested by the Region. Notify the Contract Laboratory COR if a field or trip blank was used for the MS and MSD.

For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:JC33175-1	Matrix/Level:Groundwater
Sample ID:JC33175-1_(SIM)	Matrix/Level:Groundwater
Sample ID:JC33384-6	Matrix/Level:Groundwater
Sample ID:JC33384-6_(SIM)	Matrix/Level:Groundwater

Note: MS/MSD % recoveries and RPD within laboratory control limits.

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J). If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

All criteria were metX
Criteria were not met
and/or see below

INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE	ACTION
				RANGE	

Internal area meets the required criteria for batch samples corresponding to this data package.

Action:

- If an internal standard area count for a sample or blank is greater than 213.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration) (see Table 10 below):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated low (J-).
 - b. Do not qualify non-detected associated compounds.
- 2. If an internal standard area count for a sample or blank is less than 20.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated high (J+).
 - b. Qualify non-detected associated compounds as unusable (R).
- 3. If an internal standard area count for a sample or blank is greater than or equal to 50.0%, and less than or equal to 213% of the area for the associated standard opening CCV or mid-point standard from initial calibration, no qualification of the data is necessary.
- 4. If an internal standard RT varies by more than 10.0 seconds: Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.
- 5. If an internal standard RT varies by less than or equal to 10.0 seconds, no qualification of the data is necessary.

Note: Inform the Contract Laboratory Program Project Officer (CLP PO) if the internal standard performance criteria are grossly exceeded. Note in the Data Review Narrative potential effects on the data resulting from unacceptable internal standard performance.

State in the Data Review Narrative if the required internal standard compounds are not added to a sample or blank or if the required internal standard compound is not analyzed at the specified concentration.

Actions:

Table 10. Internal Standard Actions for Semivolatile Analysis

Criteria -	Action		
Спета	Detect	Non-detect	
Area response < 20% of the opening CCV or mid-point standard CS3 from ICAL	J+	R	
20% ≤ Area response < 50% of the opening CCV or mid-point standard CS3 from ICAL	J+	UJ	
$50\% \le \text{Area response} \le 200\%$ of the opening CCV or mid-point standard CS3 from ICAL	No qualification	No qualification	
Area response > 200% of the opening CCV or mid-point standard CS3 from ICAL	J-	No qualification	
RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL > 10.0 seconds	R	R	
RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL < 10.0 seconds	No qualification	No qualification	

		All criteria were metX Criteria were not met and/or see below
TARGET COM	MPOUND IDENTIFICATION	
Criteria:		
	e Retention Times (RRTs) of reported compou g Continuing Calibration Verification (CCV	
List compound	ds not meeting the criteria described above:	3
Sample ID	Compounds	Actions
spectrum from	must be present in the sample spectrum. The relative intensities of these ions must a sample spectra (e.g., for an ion with an at the corresponding sample ion abundance must be present at greater than 10% in the sample ions present at greater than 10% in the sample ions.	ing CCV or mid-point standard from initial trum at a relative intensity greater than 10% gree within ±20% between the standard and bundance of 50% in the standard spectrum,
List compound	ds not meeting the criteria described above:	
Sample ID	Compounds	Actions
_ldentified_co	mpounds_meet_the_required_criteria	

Action:

- 1. The application of qualitative criteria for GC/MS analysis of target compounds requires professional judgment. It is up to the reviewer's discretion to obtain additional information from the laboratory. If it is determined that incorrect identifications were made, qualify all such data as unusable (R).
- 2. Use professional judgment to qualify the data if it is determined that cross-contamination has occurred.
- Note in the Data Review Narrative any changes made to the reported compounds or concerns regarding target compound identifications. Note, for Contract Laboratory COR action, the necessity for numerous or significant changes.

TENTATIVELY IDENTIFIED COMPOUNDS (TICS)

NOTE: Tentatively identified compounds should only be evaluated when requested by a party from outside of the Hazardous Waste Support Section (HWSS).

4		-	
	ist	- 11	lCs
4	1.51		10.00

Sample ID	Compound	Sample ID	Compound
	•		

Action:

- 1. Qualify all TIC results for which there is presumptive evidence of a match (e.g. greater than or equal to 85% match) as tentatively identified (NJ), with approximated concentrations. TICs labeled "unknown" are qualified as estimated (J).
- 2. General actions related to the review of TIC results are as follows:
 - a. If it is determined that a tentative identification of a non-target compound is unacceptable, change the tentative identification to "unknown" or another appropriate identification, and qualify the result as estimated (J).
 - b. If all contractually-required peaks were not library searched and quantitated, the Region's designated representative may request these data from the laboratory.
- 3. In deciding whether a library search result for a TIC represents a reasonable identification, use professional judgment. If there is more than one possible match, report the result as "either compound X or compound Y". If there is a lack of isomer specificity, change the TIC result to a nonspecific isomer result (e.g., 1,3,5-trimethyl benzene to trimethyl benzene isomer) or to a compound class (e.g., 2-methyl, 3-ethyl benzene to a substituted aromatic compound).
- 4. The reviewer may elect to report all similar compounds as a total (e.g., all alkanes may be summarized and reported as total hydrocarbons).

- 5. Target compounds from other fractions and suspected laboratory contaminants should be marked as "non-reportable".
- 6. Other Case factors may influence TIC judgments. If a sample TIC match is poor, but other samples have a TIC with a valid library match, similar RRT, and the same ions, infer identification information from the other sample TIC results.
- 7. Note in the Data Review Narrative any changes made to the reported data or any concerns regarding TIC identifications.
- 8. Note, for Contract Laboratory COR action, failure to properly evaluate and report TICs

All criteria were metX_	
Criteria were not met	
and/or see below	

SAMPLE QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

Action:

- 1. When a sample is analyzed at more than one dilution, the lower CRQL are used unless a QC exceedance dictates the use of higher CRQLs from the diluted sample. Samples reported with an "E" qualifier should be reported from the diluted sample.
- 2. If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.
- 3. For non-aqueous samples, if the solids is less than 10.0%, use professional judgment for both detects and non-detects. If the percent solid for a soil sample is greater than or equal to 10.0% and less than 30.0%, use professional judgment to qualify detects and non-detects. If the percent solid for a soil sample is greater than or equal to 30.0%, detects and non-detects should not be qualified (see Table 11).
- 4. Note, for Contract Laboratory COR action, numerous or significant failures to accurately quantify the target compounds or to properly evaluate and adjust CRQLs.
- 5. Results between MDL and CRQL should be qualified as estimated "J".
- 6. Results < MDL should be reported at the CRQL and qualified "U". MDLs themselves should not be reported.

Table 11. Percent Solids Actions for Semivolatile Analysis for Non-Aqueous Samples

Criteria	Ac	Action		
Criteria	Detects	Non-detects		
%Solids < 10.0%	Use professional judgment	Use professional judgment		
10.0% ≤ %Solids ≤ 30.0%	Use professional judgment	Use professional judgment		
%Solids > 30.0%	No qualification	No qualification		

SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
		the state of the s
79. 617% (#		
	-	
	-0.	
	- Y	4
100		
- 24		
Contract of the Contract of th		

				Crite	iteria were met ria were not met or see belowN/A	_
FIELD DUPLICATE	PRECIS	SION				
Sample IDs	:		_	Mai	trix:	
analyses measure laboratory duplicate will have a greater field duplicate samp The project QAPP s Suggested criteria:	both fields which variance les. hould be large les.	d and lab precision only laboratory per than water matrice reviewed for project RPD (> 50 %) is	analyzed as an incomplete the research and the research a	sults may los expected s associate on. entification	have more va that soil dup ed with collect of the samp	riability than licate results ting identical
COMPOUND	SQL ug/L	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION	
				1400112	D 8/	
			of this data package ired guidance docum			
target analytes above			irea guidance docuir	EIII GIIIEII	2 > 30 /0 IUI U	ciccica

Action:

_
-
graded esult of
e_used

All criteria were met __X__ Criteria were not met

- 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed.
- 2. Write a brief narrative to give the user an indication of the analytical limitations of the data. Inform the Contract Laboratory COR the action, any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).

- 3. Sometimes, due to dilutions, re-analysis or SIM/Scan runs are being performed, there will be multiple results for a single analyte from a single sample. The following criteria and professional judgment are used to determine which result should be reported:
 - The analysis with the lower CRQL
 - The analysis with the better QC results
 - The analysis with the higher results

MEMORANDUM

TO: Mr. Haley Royer

Anderson, Mulholland and Associates

DATE: January 13, 2017

FROM: R. Infante

FILE: JC33384

RE:

Data Validation

SDG: JC33384

SUMMARY

Full validation was performed on the data for three groundwater samples analyzed for dissolved methane by method RSK-175. The samples were collected at the Bristol Myer Squib-Building 5 Area, Humacao, PR site on December 06-07, 2016 and submitted to Accutest Laboratories of Dayton, New Jersey that analyzed and reported the results under delivery groups (SDG) JC33384. The sample results were assessed according to USEPA general data validation guidance documents.

In general the data is valid as reported and may be used for decision making purposes. The data results are acceptable for use.

SAMPLES

The samples included in the review are listed below

Client Sample ID	Lab. Sample ID	Collected Date	Matrix	Analysis
UP-2	JC33384-2	12/06/16	Groundwater	Methane
S-40S	JC33384-7	12/07/16	Groundwater	Methane
S-41S	JC33384-2	12/07/16	Groundwater	Methane

REVIEW ELEMENTS

Sample data were reviewed for the following parameters, where applicable to the method

- o Agreement of analysis conducted with chain of custody (COC) form
- Holding time and sample preservation
- Gas chromatography/mass spectrometry (GC/MS) tunes
- o Initial and continuing calibrations
- Method blanks/trip blanks/field blank
- o Canister cleaning certification criteria
- Surrogate spike recovery
- o Internal standard performance and retention times
- Field duplicate results
- Laboratory control sample/laboratory control sample duplicate (LCS/LCSD) results
- Quantitation limits and sample results

DISCUSSION

Agreement of Analysis Conducted with COC Request

Sample reports corresponded to the analytical request designated on the chain-of-custody.

Holding Times and Sample Preservation

Sample preservation was acceptable.

Samples analyzed within method recommended holding time.

Initial and Continuing Calibrations

Initial and continuing calibrations meet method specific requirements. Initial calibration retention times meet method specific requirements.

Method Blank/Trip Blank/Field Blank

Target analytes were not detected in laboratory method blanks.

No trip/field/equipment blank analyzed with this data package.

Laboratory/Field Duplicate Results

Field duplicates were analyzed as part of this data set. Target analytes meet the RPD performance criteria of \pm 25 % for analytes 5 x SQL.

LCS/LCSD Results

LCS (blank spike) was analyzed by the laboratory associated with this data package. Recoveries and RPD within laboratory control limits.

Quantitation Limits and Sample Results

Dilutions were not performed.

Calculations were spot checked.

Summary

Samples JC33384-2; JC33384-7; and JC33384-8 were analyzed following standard procedures accepted by regulatory agencies. The quality control requirements met the methods criteria except in the occasions described in this document.

Rafael Infante

Chemist License 1888

SAMPLE METHANE DATA SAMPLE SUMMARY

Sample ID: JC33384-2

Sample location: BMSMC Building 5 Area

Sampling date: 6-Dec-16

Matrix: Groundwater

METHOD: RSK -175

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable

Methane 1710 ug/l 1 - - Yes

Sample ID: JC33384-7

Sample location: BMSMC Building 5 Area

Sampling date: 7-Dec-16

Matrix: Groundwater

METHOD: RSK-175

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable

Methane 26.7 ug/l 1 - - Yes

Sample ID: JC33384-8

Sample location: BMSMC Building 5 Area

Sampling date: 7-Dec-16

Matrix: Groundwater

METHOD: RSK-175

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable

Methane 375 ug/i 1 - - Yes

EXECUTIVE NARRATIVE

SDG No:

JC33384

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8081B

Number of Samples:

11

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

Eleven (11) samples were analyzed for selected pesticides (Dieldrin) following method SW846-8081B. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence *Hazardous Waste Support Section SOP No. HW-36A, Revision O, June, 2015. SOM02.2. Pesticide Data Validation.* The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

1. Initial and initial calibration verification within the guidance document performance criteria. Continuing calibration % differences meet the performance criteria in at least one of the two columns. Final calibration verification included in data package. No action taken, professional judgment.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

January 12, 2017

Date:

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC33384-1

Sample location: BMSMC Building 5 Area

Sampling date: 6-Dec-16

Matrix: AQ - Equipment Blank

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.011	ug/l	1	-	U	Yes
alpha-BHC	0.011	ug/l	1	•	U	Yes
beta-BHC	0.011	ug/l	1	•	U	Yes
delta-BHC	0.011	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.011	ug/l	1	-	U	Yes
alpha-Chlordane	0.011	ug/l	1	-	U	Yes
gamma-Chlordane	0.011	ug/l	1	-	U	Yes
Dieldrin	0.011	ug/l	1	-	U	Yes
4,4'-DDD	0.011	ug/l	1	-	U	Yes
4,4'-DDE	0.011	ug/l	1	-	Ų	Yes
4,4'-DDT	0.011	ug/l	1	-	U	Yes
Endrin	0.011	ug/l	1	-	U	Yes
Endosulfan sulfate	0.011	ug/l	1	-	U	Yes
Endrin aldehyde	0.011	ug/l	1	-	U	Yes
Endrin ketone	0.011	ug/l	1	-	U	Yes
Endosulfan-l	0.011	ug/l	1	-	U	Yes
Endosulfan-II	0.011	ug/l	1	8	U	Yes
Heptachlor	0.011	ug/l	1	-	U	Yes
Heptachlor epoxide	0.011	ug/l	1	*	U	Yes
Methoxychlor	0.022	ug/l	1	75	U	Yes
Toxaphene	0.27	ug/l	1	2	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 6-Dec-16

Matrix: Groundwater

METHOD: 9091B

MET	THOD: 8081 B					
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.010	ug/l	1	-	U	Yes
alpha-BHC	0.010	ug/l	1	-	U	Yes
beta-BHC	0.010	ug/l	1	-	U	Yes
delta-BHC	0.010	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.010	ug/l	1	-	U	Yes
alpha-Chlordane	0.010	ug/l	1	-	U	Yes
gamma-Chlordane	0.010	ug/l	1	-	U	Yes
Dieldrin	0.010	ug/l	1	-	U	Yes
4,4'-DDD	0.010	ug/l	1	-	U	Yes
4,4'-DDE	0.010	ug/l	1	•	U	Yes
4,4'-DDT	0.010	ug/l	1	-	U	Yes
Endrin	0.010	ug/l	1	-	U	Yes
Endosulfan sulfate	0.010	ug/l	1	-	U	Yes
Endrin aldehyde	0.010	ug/l	1	53	U	Yes
Endrin ketone	0.010	ug/l	1	-	U	Yes
Endosulfan-I	0.010	ug/l	1	+1	U	Yes
Endosulfan-II	0.010	ug/l	1	27	U	Yes
Heptachlor	0.010	ug/l	1	6.	U	Yes
Heptachlor epoxide	0.010	ug/l	1	-	U	Yes
Methoxychlor	0.021	ug/l	1	-	U	Yes
Toxaphene	0.26	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 6-Dec-16

Matrix: AQ - Field Blank Water

	. 00011			*13		
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.010	ug/l	1	-	U	Yes
alpha-BHC	0.010	ug/l	1	-	U	Yes
beta-BHC	0.010	ug/l	1	-	U	Yes
delta-BHC	0.010	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.010	ug/l	1	-	U	Yes
alpha-Chlordane	0.010	ug/l	1	-	U	Yes
gamma-Chlordane	0.010	ug/l	1	-	U	Yes
Dieldrin	0.010	ug/l	1	•	U	Yes
4,4'-DDD	0.010	ug/l	1	-	U	Yes
4,4'-DDE	0.010	ug/l	1	-	Ų	Yes
4,4'-DDT	0.010	ug/l	1	-	U	Yes
Endrin	0.010	ug/l	1	-	U	Yes
Endosulfan sulfate	0.010	ug/l	1	-	U	Yes
Endrin aldehyde	0.010	ug/l	1	-	U	Yes
Endrin ketone	0.010	ug/l	1	-	U	Yes
Endosulfan-l	0.010	ug/l	1	-	U	Yes
Endosulfan-II	0.010	ug/l	1	-	U	Yes
Heptachlor	0.010	ug/l	1	-	Ų	Yes
Heptachlor epoxide	0.010	ug/l	1	-	Ų	Yes
Methoxychlor	0.020	ug/l	1	-	U	Yes
Toxaphene	0.25	ug/l	1		U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 7-Dec-16

Matrix: AQ - Equipment Blank

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.010	ug/l	1	-	U	Yes
alpha-BHC	0.010	ug/l	1	-	U	Yes
beta-BHC	0.010	ug/l	1	-	U	Yes
delta-BHC	0.010	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.010	ug/l	1	-	U	Yes
alpha-Chlordane	0.010	ug/l	1	-	U	Yes
gamma-Chlordane	0.010	ug/i	1	-	U	Yes
Dieldrin	0.010	ug/l	1	-	U	Yes
4,4'-DDD	0.010	ug/l	1	-	U	Yes
4,4'-DDE	0.010	ug/l	1	-	U	Yes
4,4'-DDT	0.010	ug/l	1	-	U	Yes
Endrin	0.010	ug/l	1	-	U	Yes
Endosulfan sulfate	0.010	ug/l	1	-	U	Yes
Endrin aldehyde	0.010	ug/l	1	-	U	Yes
Endrin ketone	0.010	ug/l	1	-	U	Yes
Endosulfan-I	0.010	ug/l	1	-	U	Yes
Endosulfan-II	0.010	ug/l	1	-	U	Yes
Heptachlor	0.010	ug/l	1	-	U	Yes
Heptachlor epoxide	0.010	ug/l	1	-	U	Yes
Methoxychlor	0.020	ug/l	1	-	U	Yes
Toxaphene	0.26	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 7-Dec-16

Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.010	ug/l	1	-	U	Yes
alpha-BHC	0.010	ug/l	1	-	U	Yes
beta-BHC	0.010	ug/l	1	-	U	Yes
delta-BHC	0.010	ug/l	1	-	Ų	Yes
gamma-BHC (Lindane)	0.010	ug/l	1	-	U	Yes
alpha-Chlordane	0.010	ug/l	1	-	U	Yes
gamma-Chlordane	0.010	ug/l	1	-	U	Yes
Dieldrin	0.010	ug/l	1	-	U	Yes
4,4'-DDD	0.010	ug/l	1	-	Ų	Yes
4,4'-DDE	0.010	ug/l	1	-	U	Yes
4,4'-DDT	0.010	ug/l	1	-	U	Yes
Endrin	0.010	ug/l	1	-	U	Yes
Endosulfan sulfate	0.010	ug/l	1	-	U	Yes
Endrin aldehyde	0.010	ug/l	1	-	Ų	Yes
Endrin ketone	0.010	ug/l	1	-	U	Yes
Endosulfan-l	0.010	ug/l	1	-	U	Yes
Endosulfan-II	0.010	ug/l	1	-	U	Yes
Heptachlor	0.010	ug/l	1	-	U	Yes
Heptachlor epoxide	0.010	ug/l	1	-	U	Yes
Methoxychlor	0.020	ug/l	1	-	U	Yes
Toxaphene	0.25	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 7-Dec-16 Matrix: Groundwater

IAIFII	10D. 0001D					
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.010	ug/l	1	-	Ų	Yes
alpha-BHC	0.010	ug/l	1	-	U	Yes
beta-BHC	0.010	ug/l	1	-	U	Yes
delta-BHC	0.010	ug/l	1	•	U	Yes
gamma-BHC (Lindane)	0.010	ug/l	1	-	U	Yes
alpha-Chlordane	0.010	ug/l	1	-	U	Yes
gamma-Chlordane	0.010	ug/l	1	-	U	Yes
Dieldrin	0.010	ug/i	1		U	Yes
4,4'-DDD	0.010	ug/l	1	-	U	Yes
4,4'-DDE	0.010	ug/l	1	-	U	Yes
4,4'-DDT	0.010	ug/l	1	-	U	Yes
Endrin	0.010	ug/l	1	-	Ų	Yes
Endosulfan sulfate	0.010	ug/i	1	-	U	Yes
Endrin aldehyde	0.010	ug/l	1	-	U	Yes
Endrin ketone	0.010	ug/l	1	-	U	Yes
Endosulfan-I	0.010	ug/l	1	-	U	Yes
Endosulfan-II	0.010	ug/l	1	-	U	Yes
Heptachlor	0.010	ug/l	1	-	Ų	Yes
Heptachlor epoxide	0.010	ug/l	1	-	U	Yes
Methoxychlor	0.020	ug/l	1	•	U	Yes
Toxaphene	0.25	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 7-Dec-16 Matrix: Groundwater

IAIFII	10D: 0001D					
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.010	ug/l	1	-	U	Yes
alpha-BHC	0.010	ug/l	1	-	U	Yes
beta-BHC	0.010	ug/l	1	-	U	Yes
delta-BHC	0.010	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.010	ug/l	1	-	U	Yes
alpha-Chlordane	0.010	ug/l	1	-	U	Yes
gamma-Chlordane	0.010	ug/l	1	-	U	Yes
Dieldrin	0.010	ug/l	1	-	U	Yes
4,4'-DDD	0.010	ug/l	1	•	U	Yes
4,4'-DDE	0.010	ug/l	1	-	U	Yes
4,4'-DDT	0.010	ug/l	1	-	U	Yes
Endrin	0.010	ug/l	1	-	U	Yes
Endosulfan sulfate	0.010	ug/l	1	-	U	Yes
Endrin aldehyde	0.010	ug/l	1	-	U	Yes
Endrin ketone	0.010	ug/l	1	-	U	Yes
Endosulfan-I	0.010	ug/l	1	-	U	Yes
Endosulfan-II	0.010	ug/l	1	-	U	Yes
Heptachlor	0.010	ug/l	1	-	U	Yes
Heptachlor epoxide	0.010	ug/l	1	-	U	Yes
Methoxychlor	0.020	ug/l	1	-	U	Yes
Toxaphene	0.25	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 7-Dec-16 Matrix: Groundwater

IVILI	HOD. GOOLD					
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.010	ug/l	1	-	U	Yes
alpha-BHC	0.010	ug/l	1	-	U	Yes
beta-BHC	0.010	ug/l	1	-	U	Yes
delta-BHC	0.010	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.010	ug/l	1	-	U	Yes
alpha-Chlordane	0.010	ug/l	1	-	U	Yes
gamma-Chlordane	0.010	ug/l	1	-	U	Yes
Dieldrin	0.010	ug/l	1	-	U	Yes
4,4'-DDD	0.010	ug/l	1	-	U	Yes
4,4'-DDE	0.010	ug/l	1	-	U	Yes
4,4'-DDT	0.010	ug/l	1	•	U	Yes
Endrin	0.010	ug/l	1	-	U	Yes
Endosulfan sulfate	0.010	ug/l	₂ 1	-	U	Yes
Endrin aldehyde	0.010	ug/l	1	-	U	Yes
Endrin ketone	0.010	ug/l	1	-	U	Yes
Endosulfan-I	0.010	ug/l	1	-	U	Yes
Endosulfan-II	0.010	ug/l	1	-	U	Yes
Heptachlor	0.010	ug/l	1	-	U	Yes
Heptachlor epoxide	0.010	ug/l	1	-	U	Yes
Methoxychlor	0.020	ug/l	1	-	U	Yes
Toxaphene	0.26	ug/i	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 7-Dec-16

Matrix: AQ - Field Blank Water

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.010	ug/l	1	-	U	Yes
alpha-BHC	0.010	ug/l	1	•	U	Yes
beta-BHC	0.010	ug/l	1	•	U	Yes
delta-BHC	0.010	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.010	ug/l	1	-	U	Yes
alpha-Chlordane	0.010	ug/l	1	-	U	Yes
gamma-Chlordane	0.010	ug/l	1	-	U	Yes
Dieldrin	0.010	ug/i	1	-	U	Yes
4,4'-DDD	0.010	ug/l	1	-	U	Yes
4,4'-DDE	0.010	ug/l	1	-	U	Yes
4,4'-DDT	0.010	ug/l	1	-	U	Yes
Endrin	0.010	ug/l	1	-	U	Yes
Endosulfan sulfate	0.010	ug/l	1	-	U	Yes
Endrin aldehyde	0.010	ug/l	1	-	U	Yes
Endrin ketone	0.010	ug/l	1	-	Ų	Yes
Endosulfan-I	0.010	ug/l	1	-	U	Yes
Endosulfan-II	0.010	ug/l	1	-	U	Yes
Heptachlor	0.010	ug/l	1	+1	U	Yes
Heptachlor epoxide	0.010	ug/l	1	-	U	Yes
Methoxychlor	0.020	ug/l	1	27	U	Yes
Toxaphene	0.26	ug/l	1	5.0	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 7-Dec-16

Matrix: Groundwater

WETTOD	. 00010					
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.26	ug/l	1	-	•	Yes
alpha-BHC	0.27	ug/l	1	-	-	Yes
beta-BHC	0.28	ug/l	1	-	-	Yes
delta-BHC	0.29	ug/l	1	-	-	Yes
gamma-BHC (Lindane)	0.28	ug/l	1	-	-	Yes
alpha-Chlordane	0.30	ug/l	1	-	-	Yes
gamma-Chlordane	0.28	ug/l	1	-	-	Yes
Dieldrin	0.29	ug/l	1	-	-	Yes
4,4'-DDD	0.29	ug/l	1	-	-	Yes
4,4'-DDE	0.27	ug/l	1	-	-	Yes
4,4'-DDT	0.25	ug/l	1	•	-	Yes
Endrin	0.31	ug/i	1	-	-	Yes
Endosulfan sulfate	0.28	ug/l	1	10.70	7.	Yes
Endrin aldehyde	0.32	ug/l	1	-		Yes
Endrin ketone	0.29	ug/l	1	7.	-	Yes
Endosulfan-I	0.29	ug/l	1	-	-	Yes
Endosulfan-II	0.29	ug/l	1	-	-	Yes
Heptachlor	0.26	ug/l	1	-	-	Yes
Heptachlor epoxide	0.28	ug/l	1	-	-	Yes
Methoxychlor	0.26	ug/l	1	-	-	Yes
Toxaphene	ND	ug/l	1	-	•	Yes

Sample ID: JC33384-6MSD

Sample location: BMSMC Building 5 Area

Sampling date: 7-Dec-16

Matrix: Groundwater

METHOD: 8081B

METHOD	. 00015					
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.23	ug/l	1	-	-	Yes
alpha-BHC	0.25	ug/l	1	-	-	Yes
beta-BHC	0.26	ug/l	1	-	-	Yes
delta-BHC	0.27	ug/l	1	-	-	Yes
gamma-BHC (Lindane)	0.25	ug/l	1	-	•	Yes
alpha-Chlordane	0.27	ug/l	1	-	-	Yes
gamma-Chlordane	0.25	ug/l	1	-	-	Yes
Dieldrin	0.26	ug/l	1	-	-	Yes
4,4¹-DDD	0.25	ug/l	1	-	•	Yes
4,4'-DDE	0.24	ug/l	1	-	-	Yes
4,4'-DDT	0.24	ug/l	1	-	-	Yes
Endrin	0.28	ug/l	1	-	-	Yes
Endosulfan sulfate	0.26	ug/l	1	-	-	Yes
Endrin aldehyde	0.28	ug/l	1	-	-	Yes
Endrin ketone	0.26	ug/l	1	-	-	Yes
Endosulfan-I	0.26	ug/l	1	-	-	Yes
Endosulfan-II	0.26	ug/l	1	-	-	Yes
Heptachlor	0.24	ug/l	1	-	-	Yes
Heptachlor epoxide	0.25	ug/l	1	-	-	Yes
Methoxychlor	0.25	ug/l	1	-	-	Yes
Toxaphene	ND	ug/l	1	-	-	Yes

IIC PACKAGE ganics were created to delineate t the reviewer in using professional etter serving the needs of the data to USEPA data validation guidance
t the reviewer in using professional etter serving the needs of the data
ordous Waste Support Section SOP No. Data Validation. The QC criteria and worksheets are from the primary
data package received has been ted. The data review for VOCs included:
ample matrix:Groundwater
X Laboratory Control Spikes X Field Duplicates X Calibrations X Compound Identifications X Compound Quantitation X Quantitation Limits
B
d not detected I nondetect

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
4		
4		
	1	
		-
<u></u>		
		7

All criteria were met _	_X
Criteria were not met	
and/or see below	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE	DATE	ACTION
	SAMPLED	EXTRACTED/ANALYZED	
Samples properly pro	eserved. All sampl	es extracted and analyzed wit	thin the required criteria.

B. I	- 1	L
N	α	יםו
	w	LE.

Criteria

Aqueous samples - seven (7) days from sample collection for extraction; 40 days from sample collection for analysis.

Non-aqueous samples – fourteen (14) days from sample collection for extraction; 40 days from sample collection for analysis.

Cooler temperature (Criteria: 4 ± 2 °C): 5.2°C - OK

Actions

Qualify aqueous sample results using preservation and technical holding time information as follows:

- a. If there is no evidence that the samples were properly preserved (T = 4° C \pm 2° C), and the samples were extracted or analyzed within the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ).
- b. If there is no evidence that the samples were properly preserved (T = 4° C \pm 2° C), and the samples were extracted or analyzed outside the technical holding times, qualify detects as estimated (UJ).
- c. If the samples were properly preserved, and were extracted and analyzed within the technical holding times, no qualification of the data is necessary.
- d. If the samples were properly preserved, and were extracted or analyzed outside the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ). Note in the Data Review Narrative that holding times were exceeded and the effect of exceeding the holding time on the resulting data.

- e. Use professional judgment to qualify samples whose temperature upon receipt at the laboratory is either below 2 degrees centigrade or above 6 degrees centigrade.
- f. If technical holding times are grossly exceeded, use professional judgment to qualify the data.

Qualify non-aqueous sample results using preservation and technical holding time information as follows:

- a. If there is no evidence that the samples were properly preserved (T = 4° C \pm 2° C), and the samples were extracted or analyzed within the technical holding time, qualify detects as estimated (J) and non-detects as estimated (UJ).
- b. If there is no evidence that the samples were properly preserved (T = 4° C \pm 2° C), and the samples were extracted or analyzed outside the technical holding time, qualify detects as estimated (UJ).
- c. If the samples were properly preserved, and were extracted and analyzed within the technical holding time, no qualification of the data is necessary.
- d. If the samples were properly preserved, and were extracted or analyzed outside the technical holding time, qualify detects as estimated (J) and non-detects as estimated (UJ). Note in the Data Review Narrative that holding times were exceeded and the effect of exceeding the holding time on the resulting data.
- e. Use professional judgment to qualify samples whose temperature upon receipt at the laboratory is either below 2 degrees centigrade or above 6 degrees centigrade.
- f. If technical holding times are grossly exceeded, use professional judgment to qualify the data.

All criteria were met	X
Criteria were not met see be	ow

GAS CHROMATOGRAPH WITH ELECTRON CAPTURE DETECTOR (GC/ECD) INSTRUMENT PERFORMANCE CHECK (SECTIONS 1 TO 5)

1. Resolution Check Mixture

Criteria

Is the resolution between two adjacent peaks in the Resolution Check Mixture C greater than or equal to 80.0% for all analytes for the primary column and greater than or equal to 50.0% for the confirmation column?

Yes? or No?

Is the resolution between two adjacent peaks in the Resolution Check Mixture (A and B) greater than or equal to 60.0%?

Yes? or No?

Note:

If resolution criteria are not met, the quantitative results may not be accurate due to inadequate resolution. Qualitative identifications may also be questionable if coelution exists.

Action

- a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ).
- b. Qualify non-detected compounds as unusable (R).

2. Performance Evaluation Mixture (PEM) Resolution Criteria

Criteria

Is PEM analysis performed at the required frequency (at the end of each pesticide initial calibration sequence and every 12 hours)?

Yes? or No?

Action

a. If PEM is not performed at the required frequency, qualify all associated sample and blank results as unusable (R).

Criteria

Is PEM % Resolution < 90%?

Yes? or No?

Action

- a. a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ).
- b. Qualify non-detected compounds as unusable (R).

All criteria were met	_X_	
Criteria were not met see helow		

3. PEM 4,4'-DDT Breakdown

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is detected?

Yes? or No?

Action

a. Qualify detects for 4,4'-DDT; detects for 4,4'-DDD; and detects for 4,4'-DDE as estimated (J)

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is not detected

Yes? or No?

Action

- a. Qualify non-detects for 4,4'- DDT as unusable (R)
- b. Qualify detects for 4,4'-DDD as tentatively identified (NJ)
- c. Qualify detects for 4,4'-DDE as tentatively identified (NJ)

4. PEM Endrin Breakdown

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is detected?

Yes? or No?

Action

a. Qualify detects for Endrin; detects for Endrin aldehyde; and detects for Endrin ketone as estimated (J)

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is not detected

Yes? or No?

Action

- a. Qualify non-detects for Endrin as unusable (R)
- b. Qualify detects for Endrin aldehyde as tentatively identified (NJ)
- c. Qualify detects for Endrin ketone as tentatively identified (NJ)

	All criteria were metX_	
Criteria	were not met see below	

5. Mid-point Individual Standard Mixture Resolution -

Criteria

Is the resolution between two adjacent peaks in the Resolution Check Mixture C greater than or equal to 80.0% for all analytes for the primary column and greater than or equal to 50.0% for the confirmation column?

Yes? or No?

Is the resolution between two adjacent peaks in the Resolution Check Mixture (A and B) greater than or equal to 90.0%?

Yes? or No?

Note: If resolution criteria are not met, the quantitative results may not be accurate due to inadequate resolution. Qualitative identifications may also be questionable if coelution exists.

Action

- a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ).
- b. Qualify non-detected compounds as unusable (R).

Criteria

Is mid-point individual standard mixture analysis performed at the required frequency (every 12 hours)?

Yes? or No?

Action

a. If the mid-point individual standard mixture analysis is not performed at the required frequency, qualify all associated sample and blank results as unusable (R).

All criteria were metX
Criteria were not met
and/or see below

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	12/08/16	11/15/16
Dates of initial calibration verification:_	12/08/16	11/15/16
Dates of continuing calibration:	12/14/16	12/15/16
Dates of final calibration	12/14/16	12/15/16
Instrument ID numbers:	GC1G	GC8G
Matrix/Level:	Aqueous/low	Aqueous/low
	•	·

DATE	LAB	FILE	CRITERIA OUT	COMPOUND	SAMPLES AFFECTED		
	ID#		RFs, %RSD, %D, r				
		_		`			
Initial	Initial and initial calibration verification within the guidance document performance criteria.						
Contin	Continuing calibration % differences meet the performance criteria in at least one of the two						
columns. Final calibration verification included in data package. No action taken, professional							
judgment.							

Criteria

Are a five point calibration curve delivered with concentration levels as shown in Table 3 of SOP HW-36A, Revision 0, June, 2015?

Yes? or No?

Actions

If the standard concentrations listed in Table 3 are not used, use professional judgment to evaluate the effect on the data

Criteria

Are RT Windows calculated correctly?

Yes? or No?

Action

Recalculate the windows and use the corrected values for all evaluations.

Criteria

Are the Percent Relative Standard Deviation (%RSD) of the CFs for each of the single component target compounds less than or equal to 20.0%, except for alpha-BHC and delta-BHC?

Yes? or No?

All criteria were met _	Х_
Criteria were not met	
and/or see below	

Are the %RSD of the CFs for alpha-BHC and delta-BHC less than or equal to 25.0%. Yes? or No?

Is the %RSD of the CFs for each of the Toxaphene peaks must be < 30% when 5-point ICAL is performed?

Yes? or No?

Is the %RSD of the CFs for the two surrogates (tetrachloro-m-xylene and decachlorobiphenyl) less than or equal to 30.0%.

Yes? or No?

Action

- a. If the %RSD criteria are not met, qualify detects as estimated (J) and use professional judgment to qualify non-detected target compounds.
- b. If the %RSD criteria are within allowable limits, no qualification of the data is necessary

Continuing Calibration Checks

Criteria

Is the continuing calibration standard analyzed at the acceptable time intervals? Yes? or No?

Action

- a. If more than 14 hours has elapsed from the injection of the instrument blank that begins an analytical sequence (opening CCV) and the injection of either a PEM or mid-point concentration of the Individual Standard Mixtures (A and B) or (C), qualify all data as unusable (R).
- b. If more than 12 hours has elapsed from the injection of the instrument blank that begins an analytical sequence (opening CCV) and the injection of the last sample or blank that is part of the same analytical sequence, qualify all data as unusable (R).
- c. If more than 72 hours has elapsed from the injection of the sample with a Toxaphene detection and the Toxaphene Calibration Verification Standard (CS3), qualify all data as unusable (R).

Criteria

Is the Percent Difference (%D) within ±25.0% for the PEM sample?

Yes? or No?

Action

a. Qualify associated detects as estimated (J) and non-detects as estimated (UJ).

Criteria

For the Calibration Verification Standard (CS3); is the Percent Difference (%D) within ± 25.0%? Yes? or No?

Action

Qualify associated detects as estimated (J) and non-detects as estimated (UJ).

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is detected?

Yes? or No?

Action

- a. Qualify detects for 4,4'-DDT; detects for 4,4'-DDD; and detects for 4,4'-DDE as estimated (J)
- b. Non-detected associated compounds are not qualified

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is not detected

Yes? or No?

Action

- a. Qualify non-detects for 4,4'- DDT as unusable (R)
- b. Qualify detects for 4,4'-DDD as tentatively identified (NJ)
- c. Qualify detects for 4,4'-DDE as tentatively identified (NJ)

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is detected?

Yes? or No?

Action

- a. Qualify detects for Endrin; detects for Endrin aldehyde; and detects for Endrin ketone as estimated (J)
- b. Non-detected associated compounds are not qualified

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is not detected

Yes? or No?

Action

- a. Qualify non-detects for Endrin as unusable (R)
- b. Qualify detects for Endrin aldehyde as tentatively identified (NJ)
- c. Qualify detects for Endrin ketone as tentatively identified (NJ)

All criteria were metX	
Criteria were not met	
and/or see below	

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contami	nation in the bla	anks below. Hig	h and low levels blanks	must be treated separately.
CRQL concentra	ation0.	01_ug/L		
Laboratory blani	ks			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_ug/L	5500 05			nit_of_0.01,_0.02,_and_0.25
Field/Equipmer	nt/Trip blank			CONCENTRATION
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS

All criteria were metX_	_
Criteria were not met	
and/or see below	

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

The concentration of non-target compounds in all blanks must be less than or equal to 10 μ g/L. The concentration of each target compound found in the method or field blanks must be less than its CRQL listed in the method.

Data concerning the field blanks are not evaluated as part of the CCS process. If field blanks are present, the data reviewer should evaluate this data in a similar fashion as the method blanks.

Specific actions are as follows:

Blank Actions for Pesticide Analyses

Blank Type	Blank Result	Sample Result	Action for Samples
	Detects	Not detected	No qualification required
	< CRQL	< CRQL	Report CRQL value with a U
		≥ CRQL	No qualification required
Method, Sulfur		< CRQL	Report CRQL value with a U
Cleanup, Instrument, Field, TCLP/SPLP	> CRQL	≥ CRQL and ≤ blank concentration	Report blank value for sample concentration with a U
		≥ CRQL and > blank concentration	No qualification required
	= CRQL	≤CRQL	Report CRQL value with a U
		> CRQL	No qualification required
	Gross contamination	Detects	Report blank value for sample concentration with a U

All criteria were met _X	
Criteria were not met	
and/or see below	

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES

All criteria were met __X__ Criteria were not met and/or see below___

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery.

Matrix:_Aqueou	IS				
Lab	Lab				
Sample ID	File ID	S1 a	S1 b	S2 a	S2 b
JC33384-1	1G130507.D	98	97	65	70
JC33384-2	1G130508.D	78	76	49	53
JC33384-3	1G130509.D	86	85	54	61
JC33384-4	8G1178.D	93	95	88	88
JC33384-5	8G1179.D	85	88	88	90
JC33384-6	8G1180.D	81	85	95	96
JC33384-7	8G1183.D	81	85	57	55
JC33384-8	8G1184.D	82	86	67	70
JC33384-9	8G1185.D	85	88	42	44
OP99172-BS1	1G130501.D	86	85	45	45
OP99172-MB1	1G130500.D	90	91	42	42
OP99172-MS	1G130503.D	87	88	52	54
OP99172-MSD	1G130504.D	79	77	46	48
OP99184-BS1	8G1176.D	78	76	56	50
OP99184-MB1	8G1175.D	89	87	71	62
OP99184-MS	8G1181.D	88	91	85	83
OP99184-MSD	8G1182.D	82	85	80	79
Surrogate Compounds			Recov	ery Limit	ts
S1 = Tetrachlor		26-132			
S2 = Decachlor		10-118	5%		
(a) Recovery from (b) Recovery from (c) Recovery	-				

Note: Surrogate recoveries within laboratory control limits.

Actions:

- a. For any surrogate recovery greater than 150%, qualify detected target compounds as biased high (J+).
- b. Do not qualify non-detected target compounds for surrogate recovery > 150 %.
- c. If both surrogate recoveries are greater than or equal to 30% and less than or equal to 150%, no qualification of the data is necessary.
- d. For any surrogate recovery greater than or equal to 10% and less than 30%, qualify detected target compounds as biased low (J-).
- e. For any surrogate recovery greater than or equal to 10% and less than 30%, qualify non-detected target compounds as approximated (UJ).
- f. If low surrogate recoveries are from sample dilution, professional judgment should be used to determine if the resulting data should be qualified. If sample dilution is not a factor:
 - i. Qualify detected target compounds as biased low (J-).
 - ii. Qualify non-detected target compounds as unusable (R).
- g. If surrogate RTs in PEMs, Individual Standard Mixtures, samples, and blanks are outside of the RT Windows, the reviewer must use professional judgment to qualify data.
- h. If surrogate RTs are within RT windows, no qualification of the data is necessary.
- i. If the two surrogates were not added to all samples, MS/MSDs, standards, LCSs, and blanks, use professional judgment in qualifying data as missing surrogate analyte may not directly apply to target analytes.

Summary Surrogate Actions for Pesticide Analyses

A	Action*		
Criteria	Detected Target	Non-detected Target	
	Compounds	Compounds	
%R > 150%	J+	No qualification	
30% < %R < 150%	No qualification		
10% < %R < 30%	J-	UJ	
%R < 10% (sample dilution not a factor)	J-	R	
%R < 10% (sample dilution is a factor)	Use professional judgment		
RT out of RT window	Use professional judgment		
RT within RT window	No qualification		

Use professional judgment in qualifying data, as surrogate recovery problems may not directly apply to target analytes.

All criteria were met _	_X_	_
Criteria were not met		
and/or see below		_

MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

Data for MS and MSDs will not be present unless requested by the Region.

Notify the Contract Laboratory Program Project Officer (CLP PO) if a field blank was used for the MS and MSD, unless designated as such by the Region.

NOTE: For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:JC33175-1MS/MSD	Matrix/Level:Groundwater
Sample ID:JC33384-6MS/MSD	Matrix/Level:Groundwater
The QC reported here applies to the following samples: JC33384-1 to JC33384-9	Method: SW846 8081B

Note: MS/MSD sample analyzed with this data package. % recoveries and RPD within laboratory control limits.

Action

No qualification of the data is necessary on MS and MSD data alone. However, using professional judgment, the validator may use the MS and MSD results in conjunction with other QC criteria and determine the need for some qualification of the data.

A separate worksheet should be used for each MS/MSD pair.

All criteria were met _	_X	
Criteria were not met		
and/or see below		

LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

LCS Spike Compound	Recovery Limits (%)
gamma-BHC	50 – 120
Heptachlor epoxide	50 – 150
Dieldrin	30 – 130
4,4'-DDE	50 – 150
Endrin	50 – 120
Endosulfan sulfate	50 – 120
trans-Chlordane	30 – 130
Tetrachloro-m-xylene (surrogate)	30 – 150
Decachlorobiphenyl (surrogate)	30 – 150

LCS ID	COMPOUND	% R	QC LIMIT
%_гесоvегу	_and_RPD_within_laboratory_	_control_limits	

Action

The following guidance is suggested for qualifying sample data for which the associated LCS does not meet the required criteria.

- a. If the LCS recovery exceeds the upper acceptance limit, qualify detected target compounds as estimated (J). Do not qualify non-detected target compounds.
- b. If the LCS recovery is less than the lower acceptance limit, qualify detected target compounds as estimated (J) and non-detects as unusable (R).
- c. Use professional judgment to qualify data for compounds other than those compounds that are included in the LCS.
- d. Use professional judgment to qualify non-LCS compounds. Take into account the compound class, compound recovery efficiency, analytical problems associated with each compound, and comparability in the performance of the LCS compound to the non-LCS compound.

e. If the LCS recovery is within allowable limits, no qualification of the data is necessary.

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

All criteria were met	
Criteria were not met	
and/or see belowN/A	

FLORISIL CARTRIDGE PERFORMANCE CHECK

NOTE: Florisil cartridge cleanup is mandatory for all extracts.

Criteria

Is the Florisil cartridge performance check conducted at least once on each lot of cartridges used for sample cleanup or every 6 months, whichever is most frequent?

Yes? or No?

N/A

Criteria

Are the results for the Florisil Cartridge Performance Check solution included with the data package?

Yes? or No?

N/A

Note: If % criteria are not met, examine the raw data for the presence of polar interferences and use professional judgment in qualifying the data as follows:

Action:

- a. If the Percent Recovery is greater than 120% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected compounds as estimated (J). Do not qualify non-detected target compounds.
- b. If the Percent Recovery is greater than or equal to 80% and less than or equal to 120% for all the pesticide target compounds, no qualification of the data is necessary.
- c. If the Percent Recovery is greater than or equal to 10% and less than 80% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected target compounds as estimated (J) and non-detected target compounds as approximated (UJ).
- d. If the Percent Recovery is less than 10% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected compounds as estimated (J) and qualify non-detected target compounds as unusable (R).
- e. If the Percent Recovery of 2,4,5-trichlorophenol in the Florisil Cartridge Performance Check is greater than or equal to 5%, use professional judgment to qualify detected and non-detected target compounds, considering interference on the sample chromatogram.

Note: State in the Data Review Narrative potential effects on the sample data resulting from the Florisil Cartridge Performance Check analysis not yielding acceptable results.

Note: No information for florisil cartridge performance check included in data package. There is evidence tahtFlorisil cartridge was used for sample extraction/clean-up. No qualification of the data performed, professional judgment.

All criteria were met_	_N/A	
Criteria were not met		
and/or see below		

GEL PERMEATION CHROMATOGRAPHY (GPC) PERFORMANCE CHECK

NOTE: GPC cleanup is mandatory for all soil samples.

If GPC criteria are not met, examine the raw data for the presence of high molecular weight contaminants; examine subsequent sample data for unusual peaks; and use professional judgment in qualifying the data. Notify the Contract Laboratory Program Project Officer (CLP PO) if the laboratory chooses to analyze samples under unacceptable GPC criteria.

Action:

- a. If the Percent Recovery is less than 10% for the pesticide compounds and surrogates during the GPC calibration check, the non-detected target compounds may be suspect, qualify detected compounds as estimated (J).
- b. If the Percent Recovery is less than 10% for the pesticide compounds and surrogates during the GPC calibration check, qualify all non-detected target compounds as unusable (R).
- c. If the Percent Recovery is greater than or equal to 10% and is less than 80% for any of the pesticide target compounds in the GPC calibration, qualify detected target compounds as estimated (J) and non-detected target compounds as approximated (UJ).
- d. If the Percent Recovery is greater than or equal to 80% and less than or equal to 120% for all the pesticide target compounds, no qualification of the data is necessary.
- e. If high recoveries (i.e., greater than 120%) were obtained for the pesticides and surrogates during the GPC calibration check, qualify detected compounds as estimated (J). Do not qualify non-detected target compounds.

Note: State in the Data Review Narrative potential effects on the sample data resulting from the GPC cleanup analyses not yielding acceptable results.

Note: No information for performance of GPC cleanup included in data package. No qualification of the data performed, professional judgment.

All criteria were met	_X
Criteria were not met	
and/or see below	

TARGET COMPOUND IDENTIFICATION

Criteria:

- 1. Is Retention Times (RTs) of both of the surrogates and reported target compounds in each sample within the calculated RT Windows on both columns?

 Yes? or No?
- 2. Is the Tetrachloro-m-xylene (TCX) RT ±0.05 minutes of the Mean RT (RT) determined from the initial calibration and Decachlorobiphenyl (DCB) within ±0.10 minutes of the RT determined from the initial calibration?

 Yes? or No?
- 3. Is the Percent Difference (%D) for the detected mean concentrations of a pesticide target compound between the two Gas Chromatograph (GC) columns within the inclusive range of ± 25.0 %?

 Yes? or No?
- 4. When no analytes are identified in a sample; are the chromatograms from the analyses of the sample extract and the low-point standard of the initial calibration associated with those analyses on the same scaling factor?

 Yes? or No?
- 5. Does the chromatograms display the Single Component Pesticides (SCPs) detected in the sample and the largest peak of any multi-component analyte detected in the sample at less than full scale.

 Yes? or No?
- 6. If an extract is diluted; does the chromatogram display SCPs peaks between 10-100% of full scale, and multi-component analytes between 25-100% of full scale? Yes? or No? N/A
- 7. For any sample; does the baseline of the chromatogram return to below 50% of full scale before the elution time of alpha-BHC, and also return to below 25% of full scale after the elution time of alpha-BHC and before the elution time of DCB?

 Yes? or No?
- 8. If a chromatogram is replotted electronically to meet these requirements; is the scaling factor used displayed on the chromatogram, and both the initial chromatogram and the replotted chromatogram submitted in the data package.

 Yes? or No?

Action:

- a. If the qualitative criteria for both columns were not met, all target compounds that are reported as detected should be considered non-detected.
- b. Use professional judgment to assign an appropriate quantitation limit using the following quidance:
 - If the detected target compound peak was sufficiently outside the pesticide RT Window, the reported values may be a false positive and should be replaced with the sample Contract Required Quantitation Limits (CRQL) value.

- ii. If the detected target compound peak poses an interference with potential detection of another target peak, the reported value should be considered and qualified as unusable (R).
- c. If the data reviewer identifies a peak in both GC column analyses that falls within the appropriate RT Windows, but was reported as a non-detect, the compound may be a false negative. Use professional judgment to decide if the compound should be included.

Note: State in the Data Review Narrative all conclusions made regarding target compound identification.

- d. If the Toxaphene peak RT windows determined from the calibration overlap with SCPs or chromatographic interferences, use professional judgment to qualify the data.
- e. If target compounds were detected on both GC columns, and the Percent Difference between the two results is greater than 25.0%, consider the potential for coelution and use professional judgment to decide whether a much larger concentration obtained on one column versus the other indicates the presence of an interfering compound. If an interfering compound is indicated, use professional judgment to determine how best to report, and if necessary, qualify the data according to these guidelines.
- f. If Toxaphene exhibits a marginal pattern-matching quality, use professional judgment to establish whether the differences are due to environmental "weathering" (i.e., degradation of the earlier eluting peaks relative to the later eluting peaks). If the presence of Toxaphene is strongly suggested, report results as presumptively present (N).

GAS CHROMATOGRAPH/MASS SPECTROMETER (GC/MS) CONFIRMATION

NOTE: This confirmation is not usually provided by the laboratory. In cases where it is provided, use professional judgment to determine if data qualified with "C" can be salvaged if it was previously qualified as unusable (R).

Action:

- a. If the quantitative criteria for both columns were met (≥ 5.0 ng/ μ L for SCPs and ≥ 125 ng/ μ L for Toxaphene), determine whether GC/MS confirmation was performed. If it was performed, qualify the data using the following guidance:
 - i. If GC/MS confirmation was not required because the quantitative criteria for both columns was not met, but it was still performed, use professional judgment when evaluating the data to decide whether the detect should be qualified with "C".
 - ii. If GC/MS confirmation was performed, but unsuccessful for a target compound detected by GC/ECD analysis, qualify those detects as "X".

All criteria were met _	_X	
Criteria were not met		
and/or see below		

COMPOUND QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

JC33384-6 Matrix Spike

Endrin

RF = 0.907

[] = (

(120.0 X 10⁶)(50)/(236.2 X 10⁶)(0.907)

28.0 ppb

Ok

Action:

- a. If sample quantitation is different from the reported value, qualify result as unusable (R).
- b. When a sample is analyzed at more than one dilution, the lowest CRQLs are used unless a QC exceedance dictates the use of the higher CRQLs from the diluted sample.
- c. Replace concentrations that exceed the calibration range in the original analysis by crossing out the "E" and its corresponding value on the original reporting form and substituting the data from the diluted sample.
- d. Results between the MDL and CRQL should be qualified as estimated (J).
- e. Results less than the MDL should be reported at the CRQL and qualified (U). MDLs themselves are not reported.
- f. For non-aqueous samples, if the percent moisture is less than 70.0%, no qualification of the data is necessary. If the percent moisture is greater than or equal to 70.0% and less than 90.0%, qualify detects as estimated (J) and non-detects as approximated (UJ). If the percent moisture is greater than or equal to 90.0%, qualify detects as estimated (J) and non-detects as unusable (R) (see Table).

Percent Moisture Actions for Pesticide Analysis for Non-Aqueous Samples

Criteria	Action		
	Detected Associated Non-detected Associated		
	Compounds Compounds		
% Moisture < 70.0	No qualification		
70.0 < % Moisture < 90.0	J		
% Moisture > 90.0	J R		

List sam	ples which have ≤ 50 °	% solids		
	·			
•				
,				

Note: If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.

Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
<u> </u>		
4		

All criteria were met_	_N/A	
Criteria were not met		
and/or see below		

FIELD DUPLICATE PRECISION

NOTE: In the absence of QAPP guidance for validating data from field duplicates, the following action will be taken.

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples. Identify which samples within the data package are field duplicates. Estimate the relative percent difference (RPD) between the values for each compound. If large RPDs (> 50%) is observed, confirm identification of samples and note difference in the executive summary.

Sample IDs:	_		Ma	trix:	
COMPOUND	SQL	SAMPLE	DUPLICATE	RPD	ACTION
	ug/L	CONC.	CONC.		
No field/laboratory duplicate analyzed with this data package. MS/MSD % recovery RPD used to					
assess precision. RPD within the required criteria of < 50 %.					

Actions:

- a. Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.
- b. If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:
 - If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).
 - ii. If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.
 - iii. If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.
 - iv. If both sample and duplicate results are not detected, no action is needed.

OVERALL ASSESSMENT OF DATA Action:

- 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed.
- 2. Write a brief narrative to give the user an indication of the analytical limitations of the data.

Note: The Contract Laboratory Program Project Officer (CLP PO) must be informed if any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).

Overall assessment of the data:

Results are valid; the data can be used for decision making purposes.

MEMORANDUM

TO: Mr. Haley Royer

FROM: R. Infante

Anderson, Mulholland and Associates

DATE: January 13, 2017

Ah

FILE: JC33384

RE:

Data Validation

BMSMC, Building 5 Area
Accutest Job Numbers: JC33384

SUMMARY

Full validation was performed on the data for three groundwater samples analyzed selected inorganics (iron - ferric and ferrous; nitate-nitrogen; nitrite-nitrogen; nitrate + nitrite - nitrogen; sulfate and sulfide). The methods employed are listed in Table 1. The samples were collected at the BMSMC, Building 5 Area, Humaco, PR site on December 6-7 2016 and submitted to Accutest Laboratories of Dayton, New Jersey that analyzed and reported the results under delivery groups (SDG) IC33384.

Table 1.

ANALYTE	METHOD	ANALYTE	METHOD
Iron, ferrica	SM3500FE B-11	Iron, ferrous⁵	SM3500FE B-11
Nitrogen, nitrate ^c	EPA353.2/SM4500NO2B	Nitrogen, nitrate + nitrite	EPA352.2/LACHAT
Nitrogen, nitrite	SM4500NO2 B-11	Sulfate	EPA 300/SW846-9056A
Sulfide	SM4500S2-F-11		

- (a) Calculated as: (Iron) (Iron, Ferrous)
- (b) Field analysis required. Received out of hold time and analyzed by request.
- (c) Calculated as: (Nitrogen, Nitrate + Nitrite) (Nitrogen, Nitrite)

The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: USEPA Contract Laboratory program National Functional Guidelines for Inorganic data Review (OSWER 9240.1-45, EPA 540-R-04-004, October 2004- Final), (noted herein as the "primary guidance document"). Also, QC criteria from "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846 (Final Update IV, December 1998)," and the QC requirements for the methods performed following the Standard Method guidelines are utilized. The guidelines were modified to accommodate the non-CLP methodology. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

In general the data are valid as reported and may be used for decision making purposes. The data results are acceptable for use; some of the results were qualified. Results for ferrous and ferric iron were qualified as estimated (J) in samples: JC33384-2; -7; and -8.

SAMPLES

The samples included in the review are listed below

FIELD SAMPLE ID	LABORATORY ID	ANALYSIS
UP-2	JC33384-2	See Table 1
S-40S	JC33384-7	See Table 1
S-41S	JC33384-8	See Table 1

REVIEW ELEMENTS

Sample data were reviewed for the following parameters, where applicable to the method

- o Agreement of analysis conducted with chain of custody (COC) form
- o Holding time and sample preservation
- o Initial and continuing calibrations
- Method blanks/trip blanks/field blank
- Surrogate spike recovery
- Matrix spike/matrix spike duplicate (MS/MSD) results
- o Internal standard performance
- Field duplicate results
- o Laboratory control sample/laboratory control sample duplicate (LCS/LCSD) results
- Quantitation limits and sample results

DISCUSSION

Agreement of Analysis Conducted with COC Request

Sample reports corresponded to the analytical request designated on the chain-of-custody form.

Holding Times and Sample Preservation

The cooler temperatures were within the QC acceptance criteria of $4^{\circ}\text{C} + 2^{\circ}\text{C}$.

Sample preservation was acceptable.

Samples analyzed within method recommended holding time except for the following:

- JC33384-2 for Iron, Ferrous: Field analysis required. Received out of hold time and analyzed by request.
- JC33384-7 for Iron, Ferrous: Field analysis required. Received out of hold time and analyzed by request.
- JC33384-8 for Iron, Ferrous: Field analysis required. Received out of hold time and analyzed by request.

Note: Results for ferrous and ferric iron qualified as estimated (J).

Initial and Continuing Calibrations

Initial and continuing calibration meets method performance criteria.

Method Blank/Equipment Blank/Field Blank

Target analytes were not detected in laboratory method blanks.

No field/equipment blanks analyzed as part of this data package.

MS/MSD

Matrix spike was performed. Recoveries for MS/MSD were within laboratory control limits; RPD for MS/MSD were within control limits.

Field/Laboratory Duplicate Results

Field/laboratory duplicate were analyzed as part of this data set. When no field/laboratory duplicates were analyzed, MS/MSD RPD was used to assess precision. RPD results were within laboratory/recommended control limits except for the following:

• JC33258-1/-1 DUP.: Iron, ferrous- 22.2 % RPD, outside laboratory control limit. No action taken, professional judgment. RPD within generally acceptable control limits.

LCS/LCSD Results

The laboratory analyzed one LCS (blank spike) associated with each matrix from this data set. The % recoveries of all spiked analytes were within the laboratory QC acceptance limits.

Quantitation Limits and Sample Results

Dilutions were not required with this data set.

Calculations were spot checked.

Summary

The following samples JC33384-2; JC33384-7; and JC33384-8 were analyzed following standard procedures accepted by regulatory agencies. The quality control requirements met the methods criteria except in the occasions described in this document. Some of the results were qualified, the results are valid.

Rafael Infante

Chemist License 1888

SAMPLE INORGANIC DATA SAMPLE SUMMARY

Sample ID: JC33384-2

Sample location: BMSMC Building 5 Area

Sampling date: 12/6/16

Matrix: Groundwater

Analyte Name	Method	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Fe	SW846-6010C	10200	ug/l	1.0	-	-	Yes
Mn	SW846-6010C	822	ug/l	1.0	-	-	Yes
Alkalinity, Total as CaCO3	SM2320 B-11	235	mg/l	1.0	-	-	Yes
I <mark>ron, ferric</mark>	SM3500FE B-11	10.1	mg/l	1.0	-	J	Yes 🗸 🖊
Iron, ferrous	SM3500FE B-11	< 0.20	mg/l	1.0	-	UJ	Yes 🗸 🖊
Nitrogen, nitrate	EPA 353.2/SM4500NO2B	< 0.11	mg/l	1.0	-	U	Yes
Nitrogen, nitrate + nitrite	EPA 353.2/LACHAT	<0.10	mg/l	1.0	-	U	Yes
Nitrogen, nitrite	SM4500NO2 B-11	< 0.010	mg/l	1.0	-	U	Yes
Sulfate	EPA 300/SW846 9056A	< 10	mg/l	1.0	-	U	Yes
Sulfide	SM4500S2- F-11	< 2.0	mg/l	1.0	•	U	Yes

Sample ID: JC33384-7

Sample location: BMSMC Building 5 Area

Sampling date: 12/7/16

Matrix: Groundwater

Analyte Name	Method	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Fe	SW846-6010C	3170	ug/l	1.0	-	-	Yes
Mn	SW846-6010C	2960	ug/l	1.0	-	-	Yes
Alkalinity, Total as CaCO3	SM2320 B-11	624	mg/l	1.0	-	-	Yes
Iron, ferric	SM3500FE B-11	3.1	mg/l	1.0	-	-3-	Yes
Iron, ferrous	SM3500FE B-11	< 0.20	mg/l	1.0	-	UJ ⁴	Yes
Nitrogen, nitrate	EPA 353.2/SM4500NO2B	< 0.11	mg/l	1.0	-	U	Yes
Nitrogen, nitrate + nitrite	EPA 353.2/LACHAT	< 0.10	mg/l	1.0	_	U	Yes
Nitrogen, nitrite	SM4500NO2 B-11	< 0.010	mg/l	1.0		U	Yes
Sulfate	EPA 300/SW846 9056A	47.6	mg/l	1.0	•	-	Yes
Sulfide	SM4500S2- F-11	< 2.0	mg/l	1.0	-	U	Yes

Sample ID: JC33384-8

Sample location: BMSMC Building 5 Area

Sampling date: 12/7/16 Matrix: Groundwater

 METHOD:
 8015C

 Analyte Name
 Method
 Result
 Units
 Dilution Factor
 Lab Flag
 Validation
 Reportable

 Fe
 SW846-6010C
 6910
 ug/l
 1.0
 Yes

 Mn
 SW846-6010C
 691
 ug/l
 1.0
 Yes

 Alkalinity, Total as CaCO3
 SM2320 B-11
 379
 mg/l
 1.0
 Yes

Fe	SW846-6010C	6910	ug/l	1.0	-	-	Yes
Mn	SW846-6010C	691	ug/l	1.0	-	-	Yes
Alkalinity, Total as CaCO3	SM2320 B-11	379	mg/l	1.0	-		Yes
Iron, ferric	SM3500FE B-11	6.8	mg/l	1.0	-	97	Yes
Iron, ferrous	SM3500FE B-11	< 0.20	mg/l	1.0	-	UJ	Yes 🗸
Nitrogen, nitrate	EPA 353.2/SM4500NO2B	< 0.11	mg/l	1.0	-	U	Yes
Nitrogen, nitrate + nitrite	EPA 353.2/LACHAT	<0.10	mg/l	1.0	-	U	Yes
Nitrogen, nitrite	SM4500NO2 B-11	< 0.010	mg/l	1.0	-	U	Yes
Sulfate	EPA 300/SW846 9056A	71.1	mg/l	1.0	-	-	Yes
Sulfide	SM4500S2- F-11	< 2.0	mg/l	1.0	-	U	Yes

Type of validation	Full:X Limited: EPA Region:2_	Date:12/06-07/2	JC33384 2016 2/08/16
	REVIEW OF INORGANIC	C ANALYSIS DATA PA	ACKAGE
sulfide, and/or cyan assist the reviewer serving the needs or validation guidance Section SOP NO. HIL Laboratory program 45, EPA 540-R-04-Program (CLP) (SO validation criteria we Methods SW-846 (information (if available))	ide were created to deline in using professional judge of the data users. The same documents in the following N-3b Revision 0 (July 2011) National Functional Guid 2004, October 2004- Fina DP HW-2, Revision 13. It is dere derived from "Test Met Final Update IV, 1998)".	eate required validation ment to make more infole results were assessing order of precedence 5) ISM02 ICP-MS Data delines for Inorganic data on ILM05.3 (Alchods for Evaluating South of the project QAPP is did data validation action	16020/7000A series method in actions. This document will formed decision and in better sed according to USEPA data as: Hazardous Waste Support a Validation; USEPA Contract at a Review (OSWER 9240.1) for the Contract Laboratory ugust 2009). Quality controllid Waste, Physical/Chemical reviewed for project specificals listed on the data review is enoted.
			ackage received has beer arized. The data review for
No. of Samples:		·	trix:Groundwater
X Data deliveryX Holding TiX CalibrationX BlanksX ICP InterferyX Matrix Spire	mes	X Fi X La X IO X Da	aboratory Duplicates ield Duplicates aboratory Control Samples CP Serial Dilution Results etection Limits Results ample Quantitation
Overall Comments:	_Fe_and_Mn_(SW846-60	10C)	
Definition of Qualifie	rs:		
J- Estimated re U- Compound R- Rejected da UJ- Estimated n E- Laboratory o	not detected ta on-detect		
Reviewer:	afuel defuet		Date:01/13/2017

				Criteria were met Criteria were not met and/or see below	
l.	DATA	DELIVERABLE	S		
	A.	Data Package			
<u>MISSI</u>	ING INF	ORMATION	DATE LAB. CONTACTED	DATE RECEIVED	
		500.0			_
					_
			,		
	B.	Other Discrepa	ancies:		
					_
				10	_
			··		
a y					

All criteria were metX	_
Criteria were not met	
and/or see below	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of preparation, and subsequently from the time of preparation to the time of analysis.

Complete table for all samples and circle the analysis date for samples not within criteria

SAMPLE ID	DATE SAMPLED	CYANIDE DATE ANALYSIS	Hg DATE ANALYSIS	OTHERS DATE ANALYSIS	pН	SULFIDE	ACTION
SAMPLES	DIGESTED AI	ND ANALYZE	D WITHIN T	HE METHO	D REC	 OMMEND!	ED HOLDING
]	

<u>Criteria</u>

Metals – 180 days from time of collection.	
Mercury – 28 days from time of collection.	
Hexavalent Chromium (solids)- 30/7 from day of collection; 48 hrs aqueous samples	
Cyanide – 14 days from time of collection	
Sulfide - 14 days from time of collection	
pH measurements of aqueous samples upon receipt at the laboratory (criteria pH ≤ 2 for meta	als
pH ≥ 12 for cyanide)	

Actions: Qualify positive results/nondetects as follows:

If holding times are exceeded, estimate positive results (J) and rejects nondetects (R)
If pH > 2 for metals or pH < 12 for cyanide, positive results (J) and nondetects (UJ).
Cooler Temperature (Criteria: 4°C + 2°C):5.2°C
If cooler temperature is > 10°C, flag non-detects as (UJ) and detects as (J).

All criteria were metN/A_	
Criteria were not met	
and/or see below	

ICP-MS TUNE ANALYSIS

Is the ICP-MS tuned prior to calibration?

Yes or No?

Does the % RSD exceeds 5% for any isotope in the tuning solution?

Yes or No?

Action:

NOTES: For ICP-MS tunes that do not meet the technical criteria, apply the action to all samples reported from the analytical run.

- 1. If the ICP-MS instrument was not tuned prior to calibration, the sample data should be qualified as unusable (R).
- 2. If the tuning solution was not analyzed or scanned at least 5x consecutively or the tuning solution does not contain the required analytes spanning the analytical range, the reviewer should use professional judgment to determine if the associated sample data should be qualified. The reviewer may need to obtain additional information from the laboratory. The situation should be recorded in the Data Review Narrative and noted for Contract Laboratory Program Project Officer (CLP PO) action.
- 3. If the resolution of the mass calibration is not within 0.1 u for any isotope in the tuning solution, qualify all analyte results that are ≥ Method Detection Limit (MDL) associated with that isotope as estimated (J), and all non-detects associated with that isotope as estimated (UJ). The situation should be recorded in the Data Review Narrative and noted for CLP PO action.
- 4. If the %RSD exceeds 5% for any isotope in the tuning solution, qualify all sample results that are ≥ MDL associated with that tune as estimated (J), and all non-detects associated with that tune as estimated (UJ). The situation should be recorded in the Data Review Narrative and noted for CLP PO action.

Table 2. ICP-MS Tune Actions for ICP-MS Analysis

ICP-MS Tune Results	Action for Samples
Tune not performed	Qualify all results as unusable (R)
Tune not performed properly	Use professional judgment
Resolution of mass calibration not within 0.1u	Qualify results that are ≥ MDL as estimated (J)
	Qualify non-detects as estimated (UJ)
% RSD > 5%	Qualify results that are ≥ MDL as estimated (J)
	Qualify non-detects as estimated (UJ)

Note: Analytes (As) analyzed by SW846-6010 – no tuning necessary.

All criteria were metX
Criteria were not met
and/or see below

INSTRUMENT CALIBRATION (SECTION 1)

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data. Minimum of 2 calibration points for ICP-AES and ICP-MS; 5 points for Hg; and 4 points for cyanide. One initial calibration standard at the CRQL level for cyanide and Hg. If no, write in the non-compliance section of the data review narrative.

List the analytes which did not meet the percent recovery (%R) criteria for Initial or Continuing Calibration Verification standards (ICV or CCV).

Acceptance Criteria	ICV %R	CCV %R
Metals by 6010C/6020 Mercury/Metals by 7000s Cyanide Sulfide	100 + 10% 100 + 10% 100 + 15% 100 + 15%	100 + 10% 100 + 20% 100 + 15% 100 + 15%

DATE	ICV/CCV#	ANALYTE	%R	ACTION	SAMPLES AFFECTED
INITI	AL AND CONTI	NUING CALIBRA	N NOITA	NEET METHOD SPEC	IFIC CRITERIA

ACTIONS: If any analyte does not meet the %R criteria, follow the actions stated below. Qualify five samples on either side of the ICV/CCV out of control limit.

Estimate positive results (J) if:	ICV	CCV
Metals by 6010C/6020	111 – 125%	111 – 125%
Mercury/Metals by 7000s	111 – 125%	111 – 135%
Cyanide	116 – 130%	116 130%
Sulfide	116 – 130%	116 – 130%
Estimate positive results and nondetects (U/UJ) if:	
Metals by 6010C/6020	75 – 89%	75 – 89%
Mercury/Metals by 7000s	75 – 89%	65 – 79%
Cyanide	70 – 84%	70 – 84%
Sulfide	70 – 84%	70 – 84%
Reject positive results and nondetects (R)	if:	
Metals by 6010C/6020	<75%, >125%	<75%, >125%
Mercury/Metals by 7000s	<75%, >125%	<65%, >135%
Cyanide	<70%, >130%	<70%, >130%
Sulfide	<70%, >130%	<70%, >130%

All criteria were metX	<u> </u>
Criteria were not	met
and/or see below	

- III. INSTRUMENT CALIBRATIONS (SECTIONS 2 & 3)
- 2. Analytical Sequence

Did the laboratory use the proper number of standards for calibration as described in the method?

Yes or No

B. Were calibrations performed at the beginning of each analysis?

Yes or No.

Were calibration verification standards analyzed at the beginning of sample analysis and the proper frequency according to the method?

Yes_or No

D. Where the AA correlation coefficients (r) for the calibration curves
 ≥ 0.995? If r < 0.995, estimate positive results and nondetects (J/UJ).
 It is not necessary to qualify results if the laboratory used order regression.

Yes or No

Data quality may be affected if any of the above answer are "no". Use professional judgment to determine the severity of the effect and qualify the data accordingly. Discuss any actions below and list the sample affected.

3. Other Check Standards

Laboratories may analyze an additional check standard after establishing the calibration curve. This standard may contain low level concentrations of target analytes and be analyzed and evaluated by the laboratory similar to a CLP "CRLD" standard (CRI for ICP, CRA for AA, and/or mid-range standard for CN and Sulfide). A $100 \pm 20\%$ recovery acceptance limit should be used by the validator to evaluate the standard.

ACTIONS: If any analyte does not meet the %R criteria, follow the action needed below. Qualify 50% of either side of the CRI/CRA out of control limits.

% R		%R < 50%	%R 79%	=	50-	%R 150%	=	121-	%R 150%	>	Affecte	ed Ra	nge
Qualify Positiv	/e/No	ondetects Res				13070			130 /8				
Metals 6010C/6020	by	R/R	J/UJ			J/A			R/A		<2x CI	RI coi	nc.
Hg/metals 7000s	by	R/R	J/UJ			J/A			R/A		<1.5x conc.		CRI
Cyanide		R/R	J/UJ			J/A			R/A		<1.5x conc.	mid	std.
Sulfide		R/R	J/UJ			J/A			R/A		<1.5x conc.	mid	std.

CRI is not required for AI, Ba, Ca, Fe, Mg, Na, and K.

NOTE: CRLD standard within laboratory and method specific criteria.

All criteria were metN	I/A
Criteria were n	ot met
and/or see below _	

Table 4. Calibration Actions for ICP-MS Analysis

Calibration Result	Action for Samples
Calibration not performed	Qualify all results as unusable (R)
Calibration incomplete	Use professional judgment
	Qualify results that are ≥ MDL as estimated
	(J)
	Qualify non-detects as estimated (UJ)
Not at least one calibration standard at or	Qualify results that are ≥ MDL but < 2x the
below the CRQL for each analyte	CRQL as estimated (J)
	Qualify non-detects as estimated (UJ)
Correlation coefficient < 0.995; %D outside	Qualify results that are ≥ MDL as estimated
±30%; y-intercept ≥ CRQL	(J)
	Qualify non-detects as estimated (UJ)
Correlation coefficient < 0.990	Qualify results that are ≥ MDL as estimated
	(J)
	Qualify non-detects as unusable (R)
ICV/CCV %R < 75%	Qualify results that are ≥ MDL as unusable
	(R)
	Qualify all non-detects as unusable (R)
ICV/CCV %R 75-89%	Qualify results that are ≥ MDL as estimated
	low (J-)
	Qualify non-detects as estimated (UJ)
ICV/CCV %R 111-125%	Qualify results that are ≥ MDL as estimated
	high (J+)
ICV/CCV %R > 125%	Qualify results that are ≥ MDL as estimated
	high (J+)
ICV/CCV %R > 160%	Qualify results that are ≥ MDL as unusable
	(R)

All criteria were met	_x
Criteria were î	
and/or see below	

IV. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including equipment, field, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in Sections 1 & 2 below. A separate worksheet page should be used for soil and water blanks.

Laboratory blanks			Matrix:Aqu	leous
DATE ANALYZED	ICB/CCB#	PREP BLK	ANALYTE	CONCENTRATION UNITS
No_analyte_d	etected_in_met	hod_blanks_	_above_reporting_limits	A 20 September 1991
Field/Equipment			Matrix:Aqu	ueous
DATE ANALYZED	EQUIPMENT BLANK	Γ/FIELD	ANALYTE	CONCENTRATION UNITS
		. – –	part_of_this_data_package	

Table. Field/Rinsate/Trip Blank Actions for ICP-MS Analysis

Blank Result	Sample Result	Action for Samples
> CRQL	≥ MDL but ≤ CRQL	Report CRQL value with a "U"
	> CRQL but < Blank Result	Report at level of Blank Result with a "U"
	> Blank Result but < 10x the Blank Result	Use professional judgment to qualify results as estimated (J)

	A	Il criteria were metX Criteria were not met and/or see below
IV.	BLANK ANALYSIS RESULTS (Section 3)	
Freque	ency requirements	
at the f	e preparation blank analyzed for each matrix, requency of the method? stimate positive results < 10x IDL for which preparation blank was than 20 samples/batch, qualification begins at the 21st sample.	Yes or No as not analyzed.
B.	Was an ICB analyzed?	Yes or No
C.	Was a CCB analyzed at the frequency stated in the method?	Yes or No
determ	uality may be affected if any of the above answer is "no". Use ine the severity of the effect and qualify the data accordingly. It the samples affected.	
	I I = 	
Compa	FOR SOIL SAMPLES IFE raw sample value with blank results in ug/L unit, or t blanks analyzed during a soil case to mg/Kg in order to comp	pare them with the sample
	In ug/L x [Volume diluted to (mL)]/[Weight digested] x 1L/1000m 000□g = concentration in wet weight (mg/Kg)	nL x 1000g/1Kg x
Concer	ntration, dry weight (mg/Kg) = (Wet weight concentration)/(% Sol	ids) x 100
BLANK	ANALYSIS RESULTS (Sections 4,5)	
sample	ntamination remaining in the field or equipment blank will be use	• •

			All criteria were metX Criteria were not met and/or see below
4. Initia	l/Continuing Cali	bration Blanks (ICB/C	CB) Actions
Are all ICB/C	CBs less than th	e SQL?	Yes or No
		either side of the ICB/0; the ICB/CCB value.	CCB out of control limits.
ICB/CCB#	ANALYTE	CONC/UNITS	SAMPLES AFFECTED
Are the PB le	ess than the SQL	?	Yes or No
If yes, reject	all results (R) < 1	0x the PB value.	
РВ	ANALYTE	CONC/UNITS	SAMPLES AFFECTED
		<u></u>	
BLANK ANA	LYSIS RESULTS	S (Section 6)	
6. <u>Field</u>	/Equipment Blan	k (FB/EB) Actions	
Are t	the FB/EB less th	an the SQL?	Yes or No
If no, was the	e FB/EB value alr	ready rejected due to o	other QC criteria? Yes or No
If no, reject (the FB/EB va		s <_5x the FB/EB valu	e. Reject soil data with raw digest results < 5x
PB	ANALYTE	CONC/UNITS	SAMPLES AFFECTED

All criteria were met __N/A__ Criteria were not met and/or see below ____

Table 5. Calibration/Preparation Blank Actions for ICP-MS Analysis - Summary

Blank Type	Blank Result	Sample Result	Action for Samples		
ICB/CCB	≥ MDL but ≤ CRQL	Non-detect	No action		
≥ MDL but ≤ CRQL	1	Report CRQL value with	h a "U"		
> CRQL	-2004.5	Use professional judgm	ent		
ICB/CCB	> CRQL	≥ MDL but ≤ CRQL	Report CRQL value with a "U"		
> CRQL but < Blank Re	sult	Report at level of Blank	Result with a "U"		
> Blank Result		Use professional judgm	ent		
ICB/CCB	≤ (-MDL) but ≥ (-CRQL)	≥ MDL, or non-detect	Use professional judgment		
ICB/CCB	< (-CRQL)	< 10x the CRQL	Qualify results that are ≥ CRQL as estimated low (J-)		
			Qualify non-detects as estimated (UJ)		
Preparation Blank	> CRQL	≥ MDL but ≤ CRQL	Report CRQL value with a "U"		
> CRQL but < 10x the B	lank Result	Qualify results as estimate	Qualify results as estimated high (J+)		
≥ 10x the Blank Result		No action			
Preparation Blank	≥ MDL but ≤ CRQL	Non-detect	No action		
≥ MDL but ≤ CRQL	,	Report CRQL value with a "U"			
> CRQL		Use professional judgment			
Preparation Blank	< (-CRQL)	< 10x the CRQL	Qualify results that are ≥ CRQL as estimated low (J-)		
		W-511 - W-1000 - V	Qualify non-detects as estimated (UJ)		

				Crite	ria were not met
INDUCTIVELY C	OUPLED PLAS	SMA (ICP) INTEI	RFERENCE CHEC	K SAMPLE	
The assessmen interelement and			eck sample (ICS)	is to verify	the laboratory's
1. Recover	y Criteria				
List any elements %).	s in the ICS AB	and ICS A solut	ions which did not	meet the %R o	criteria (80 – 120
DATE	ELEMENT	%R ACTION	N SAMPLES	SAFFECTED	
_Interference_ch	eck_sample_w	ithin_method_pe	rformance_criteria		
ACTIONS:	es not meet the	%R criteria, follo	w the actions state	ed below	
% R	%R < 50%	%R = 50-	%R = 121-	%R >	
Qualify Positive/N	 √ondetects Res	79% sults	150%	150%	
Metals by 6010C/6020	7	J/UJ	J/A	R/A	
2. Frequence	cy requirements	5			
Were interferenc (beginning of the			ncy stated in the m		or No
If no, ACTIONS: Estim	ate positive res	sults (J) all sampl	es for which Al, Ca	a, Fe, Mg > ICS	S value.
			gment to determine below and list the		
					29752 19
A				Deposit _	
					= 2
5			· · · · · · · · · · · · · · · · · · ·		

ΑII	criteria	were	met	:N	N/A_	
		Crit	eria	were	not	met
	а	nd/or	see	belov	v	

Table 6. Interference Check Actions for ICP-MS Analysis - Summary

Interference Check Sample Results	Action for Samples
ICS not analyzed	Qualify detects and non-detects as unusable (R)
ICS not analyzed in proper sequence	Use professional judgment.
ICS %R>150%	Use professional judgment
ICS %R > 120% (or greater than true value + 2x the CRQL)	Qualify results that are ≥ MDL as estimated high (J+)
ICS %R 80-12-%	No qualification
ICS %R 50-79% (or less than true value – 2x the CRQL)	Qualify results that are ≥ MDL as estimated low (J-)
	Qualify non-detects as estimated (UJ)
ICSAB %R < 50%	Qualify detects as estimated low (J-) and non- detects as unusable (R)
Potential false positives in field samples with interferents	Qualify results that are ≥ MDL as estimated high (J+)
Potential false negatives in field samples with interferents	Qualify results that are ≥ MDL but < 10x the (negative value) as estimated low (J-) Qualify non-detects as estimated (UJ)

		C	were metX Criteria were not met or see below
VI.	MATRIX SPIKE (MS)		
Sampl	e # _JC33477-3MS/-3MSD	Matrix:Groundwater	Units:ug/L

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. Note that for Region 2, MS not required for: Ca, Mg, K, and Na for aqueous matrix.

Al, Ca, Fe, Mg, K, Na, for soil matrix

MS Recovery Criteria. List the percent recoveries for analytes which did not meet the %R criteria (75 – 125%); (85 – 115 % FOR Cr (VI)).

ANALYTE	SPIKE SAMPLE	SAMPLE	SPIKE	% R	ACTION
	RESULT (SSR)	RESULT (SR)	ADDED		
	MS/MSD rec	overies and RPD	within labo	ratory c	ontrol limits.

ACTIONS: Matrix spike actions apply to all samples of the same matrix. The qualification will also be applied to the results of all samples within a given area of the site, if deemed appropriate.

If the sample results \geq 4x the spike concentration, no action is taken. If any analyte does not meet the %R criteria, follow the actions stated below.

Table 9. Spike Sample Actions for ICP-MS Analysis

Spike Sample Results	Action for Samples
Matrix Spike %R < 30% Post-digestion spike %R < 75%	Qualify affected results that are ≥ MDL as estimated low (J-) and affected non-detects as unusable (R)
Matrix Spike %R < 30% Post-digestion spike %R ≥ 75%	Qualify affected results that are ≥ MDL as estimated (J) and affected non-detects as estimated (UJ)
Matrix Spike %R 30-74% Post-digestion Spike %R < 75%	Qualify affected results that are ≥ MDL as estimated low (J-) and affected non-detects as estimated (UJ)
Matrix Spike %R 30-74% Post-digestion spike %R ≥ 75%	Qualify affected results that are ≥ MDL as estimated (J) and affected non-detects as estimated (UJ)
Matrix Spike %R > 125% Post-digestion spike %R > 125%	Qualify affected results that are ≥ MDL as estimated high (J+)
Matrix Spike %R > 125% Post-digestion spike %R ≤ 125%	Qualify affected results that are ≥ MDL as estimated (J)

Spike Sample Results	Action for Samples
Matrix Spike %R < 30% No post-digestion spike performed	Qualify affected results that are ≥ MDL as estimated low (J-) and affected non-detects as unusable (R)
Matrix Spike %R 30-74% No post-digestion spike performed	Qualify affected results that are ≥ MDL as estimated low (J-) and non-detects as estimated (UJ)
Matrix Spike %R > 125% No post-digestion spike performed	Qualify affected results that are ≥ MDL as estimated high (J+) Non-detects are not qualified

2. Frequency Criteria

A. Was a matrix spike prepared at the frequency stated in the method (1/20)? Yes or No

If no, estimate positive results (J) for which analyte was not spiked. If more than 20 samples/batch, qualification begins at the 21st sample.

B. Was a field blank used as spiked sample? Yes or $\underline{\text{No}}$ If yes, estimate positive results (J) < 4x spike level added for the analyte.

A separate worksheet page should be used for each matrix spike

			All criteria were metN/A Criteria were not met and/or see below
VII.	FIELD DUPLICATES		
Sampl	e #:	Matrix:	Units:_ug/L

Field duplicate samples may be taken and analyzed as an indication of overall precision. Field duplicate analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which measure only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

List the concentrations and RPDs in the field duplicate pair. RPD criteria: \pm 20% for aqueous; \pm 35% for soil. For soil duplicates, if the % solids for the sample and its duplicate differ by more than 1%, report concentrations in ug/L and calculate RPD or difference for each analyte.

ANALYTE	SQL ug/L	SQL ug/Kg	SAMPLE RESULTS	DUPLICATE RESULTS	RPD	ACTION
Al	Ī					
Sb						
As						MSD % recoveries RPD erally acceptable control
Ba				1		
Be	1					
Cd						
Ca	1					
Cr	ĺ	1				
Co	İ					
Cu						
Fe						
Pb						
Mg						
Mn						
Hg						
Ni						
K						
Se						
Ag						
Na						
TI						
V						
Zn						
Cyanide	1					
Cr(VI)	1					
, ,						

Field duplicate actions should be applied to only the sample and its duplicate.

All criteria were met	N/A
Criteria were	not met
and/or see belo	w

<u>Actions:</u> Indicates which criterion was used to evaluate precision by circling either the RPD or SQL for each element. If both sample and duplicate are nondetects, the RPD is not calculated (NC), no action is needed.

Table 8. Duplicate Sample Actions for ICP-MS Analysis

Duplicate Sample Results	Action for Samples
Aqueous: Both original sample and duplicate sample > 5x the CRQL and 20% < RPD < 100%	Qualify those results that are ≥ CRQL as estimated (J)
Aqueous: Both original sample and duplicate sample > 5x the CRQL and RPD ≥ 100%	Qualify those results that are ≥ CRQL as unusable (R)
Soil/Sediment: Both original sample and duplicate sample > 5x the CRQL and 35% < RPD < 120%	Qualify those results that are ≥ CRQL as estimated (J)
Soil/Sediment: Both original sample and duplicate sample > 5x the CRQL and RPD ≥ 120%	Qualify those results that are ≥ CRQL as unusable (R)
Original sample or duplicate sample ≤ 5x the CRQL (including non-detects) and absolute difference between sample and duplicate > CRQL	Qualify those results that are ≥ MDL as estimated (J) and non-detects as estimated (UJ)

A separate worksheet page should be used for each laboratory duplicate analysis

		All	criteria were met _ Criteria were	not met
			and/or see belov	<i>~</i>
VIII. LABORATORY DUPLICATES (Section 1)			
Laboratory run duplicates samples to measure of laboratory performance. It greater variance than water matrices duplicate samples.	is also exp	ected that soil dup	olicate results will	have a
1. Difference Criteria				
List the concentrations of any analyte n for soil). For soil duplicates, if the % so 1%, report concentrations in □g/L and contentrations in □g/L and conte	olids for the	sample and its dup	licate differ by mo	
Sample #	Matrix:		Units:	

ANALYTE	SQL ug/L	SQL mg/Kg	SAMPLE RESULTS	DUPLICATE RESULTS	RPD	ACTION
Al						
Sb		1				
As						
Ва						
Ве						
Cd						
Ca						
Сг						
Co						
Cu						
Fe						
Pb						
Mg						
Mn						
Hg						
Ni						
K						
Se						
Ag						
Na						
TI						
V						
Zn						
Cr(VI)						
Sulfide						
Cyanide						

Note:

Laboratory duplicates actions should be applied to all other samples of the same matrix type. This qualification will also be applied to the results of all samples within a given area of the site, if deemed appropriate.

All criteria were met	_N/A
Criteria were	not met
and/or see belov	N

<u>Actions:</u> Indicates which criterion was used to evaluate precision by circling either the RPD or SQL for each element. If both sample and duplicate are non-detects, the RPD is not calculated (NC), no action is needed.

Table 8. Field Duplicate Sample Actions for ICP-MS Analysis

Sample Type	Field Duplicate Result	Action for Samples
Aqueous	Sample and its field duplicate ≥ 5x the CRQL and RPD > 20%	Qualify sample and its duplicate as estimated (J)
00	Sample and/or its field duplicate < 5x the CRQL and absolute difference > the CRQL	Qualify results > the MDL as estimated (J) Qualify non-detects as estimated (UJ)
Soil/Sediment	Sample and its field duplicate ≥ 5x the CRQL and RPD > 50%	Qualify sample and its duplicate as estimated (J)
	Sample and/or its field duplicate < 5x the CRQL and absolute difference > 2x the CRQL	Qualify results > the MDL as estimated (J)
		Qualify non-detects as estimated (UJ)

2. Frequency Criteria

A. Was a laboratory duplicate prepared at the frequency stated in the method (1/20)? Yes or No

If no, estimate positive results (J) for the analyte which duplicate was not performed. If more than 20 samples/batch, qualification begins at the 21st sample.

B. Was a field blank used for laboratory duplicate analysis? Yes or **No**

If yes, estimate positive results (J) for the analyte if field blank was used for duplicate analysis.

All criteria were metX
Criteria were not met
and/or see below

IX. LABORATORY CONTROL SAMPLE (LCS/LCSD)

The assessment of the LCSs is to determine both intralaboratory contamination and matrix specific precision and accuracy. Note that for Region 2, LCS is not required for aqueous Hg and Cyanide.

LCS Recoveries Criteria

A. Aqueous LCS/Solid LCS

List any LCS recoveries not within %R criteria (80 - 120%) and the samples affected.

DATE	ELEMENT	% R	ACTION	SAMPLES AFFECTED
Recover	ries_within_laboratory_cor	ntrol_limits		
				- 200000
		2000 - 200		200
	-2			

ACTIONS: If analyte does not meet the %R criteria, follow the actions stated below:

Table 7. LCS Actions for ICP-MS Analysis

LCS Result	Action for Samples
%R 40-69%	Qualify results that are ≥ MDL as estimated low (J-) Qualify non-detects as estimated (UJ)
%R > 130%	Qualify results that are ≥ MDL as estimated high (J+)
%R 70-130%	No qualification
%R < 40%	Qualify results that are ≥ MDL as estimated low (J-) Qualify non-detects as unusable (R)
%R > 150%	Qualify detects as unusable (R); non- detects no qualification

All criteria were metX
Criteria were not me
and/or see below

2. Frequency Criteria

A. Was a laboratory control sample prepared at the frequency stated in the method (1/20)? Yes or No

If no, estimate positive results (J) for the analyte if LCS was not performed.

If more than 20 samples/batch, qualification begins at the 21st sample.

	All criteria were metX Criteria were not met and/or see below
X,	ICP SERIAL DILUTION ANALYSIS (Section 1)
	sessment of the ICP serial dilution analysis is to determine the precision of the laboratory a 5x dilution.
1.	Percent Difference (%D) Criteria:
	Serial dilutions were performed for each matrix and results for the diluted s analysis agreed within 10% of the undiluted analysis for the analyte concentrations \leq DL.
_	Serial dilutions were not performed for the following target analytes:
for anal	Serial dilutions were performed, but analytical results did not agree within 10% difference lyte concentrations > 50x IDL before dilution.
List the	%Ds for analytes which did not meet the %D criteria (10%/100%)
Sample	# _ JC33384-3 Matrix:Groundwater Units:_ug/L

ANALYTE	IDL	50x IDL	SAMPLE RESULTS	SERIAL DILUTION	%D	ACTION
Al						
Sb		-				
As						
(total/dissolved)						
Ва						
Be						
Cd						
Ca						
Cr		j.				
Co						
Cu						
Fe	8.9	445	36.4	57.2	57.1	No action; sample concentration < 50 x IDL
Pb						
Mg						
Mn						
Hg						
Ni						
K						
Se						
Ag						
Na						
TI						
V						
Zn						

Note: Serial dilution within method performance criteria.

All criteria were metX
Criteria were not met
and/or see below

ACTIONS: Actions apply to all samples of the same matrix. The qualification will also be applied to the results of all samples within a given area of the site, if deemed appropriate. Qualify only samples with raw results > 50x MDL.

Flag results with an (E) for elements exhibiting %D > 10%. Estimate (J) positive results > 50x MDL for elements that exhibited %D > 10 but < 100.

Reject (R) positive results > 50x MDL for elements which exhibited %D ≥ 100 %.

SERIAL DILUTION ANALYSIS (Section 2)

2. Frequency Criteria

A. Was a serial dilution analysis prepared as required by the method? Yes or No

If no, estimate positive results ≥ 50x MDL (J) for the analyte which serial dilution analysis was not performed.

B. Was a field blank used for serial dilution analysis?

Yes or No

If yes, estimate positive results \geq 50x MDL (J) for the analyte if field blank was used for serial dilution analysis.

Table 10. Serial Dilution Actions for ICP-MS Analysis

Serial Dilution Result	Action for Samples				
Aqueous: Sample concentration > 50x MDL and 10% < %D < 100%	Qualify affected results whose raw data are > MDL as estimated (J)				
Aqueous: Sample concentration > 50x MDL and %D ≥ 100%	Qualify affected results whose raw data are > MDL as unusable (R)				
Soil/Sediment: Sample concentration > 50x MDL and 15% < %D < 120%	Qualify affected results whose raw data are > MDL as estimated (J)				
Soil/Sediment: Sample concentration > 50x MDL and %D ≥ 120%	Qualify affected results whose raw data are > MDL as unusable (R)				
Interferences present	Use professional judgment				

A separate worksheet page should be used for each serial dilution analysis.

		and/or see below
XI.	ICP-MS INTERNAL STANDARDS	
	Are internal standard added to the sample?	Yes_or No?
	Are the proper number of internal standard added to the sample?	Yes or No?
	Is the % Relative Intensities for all internal standards in a sample response in the calibration blank?	is within 60-125% of the Yes or No?
	Note:_7_internal_standards_used;_relative_intensities_within_th _performance_criteria	e_guidance_document_

All criteria were met _

Action:

NOTE: Apply the action to the affected analytes for each sample that does not meet the internal standard criteria.

- 1. If no internal standards were analyzed with the run, the sample data should be qualified as unusable (R). Record this in the Data Review Narrative and note for CLP Project Officer (CLP PO) action.
- 2. If less than five of the required internal standards were analyzed with the run, or a target analyte(s) is (are) not associated to an internal standard, the sample data, or analyte data not associated to an internal standard should be qualified as unusable (R). Record this in the Data Review Narrative and note for CLP PO action.
- 3. If the % Relative Intensities for all internal standards in a sample is within 60-125% of the response in the calibration blank, the sample data should not be qualified.
- 4. If the %RI for an internal standard in a sample is not within the 60-125% limit, qualify the data for those analytes associated with the internal standard(s) outside the limit as follows:
 - a. If the sample was reanalyzed at a two-fold dilution with internal standard %RI within the limits, report the result of the diluted analysis without qualification. If the %RI of the diluted analysis was not within the 60-125% limit, report the results of the original undiluted analyses and qualify the data for all analytes that are ≥ Method Detection Limit (MDL) in the sample associated with the internal standard as estimated (UJ).
 - b. If the sample was not reanalyzed at a two-fold dilution, the reviewer should use professional judgment to determine the reliability of the data. The reviewer may determine that the results are estimated (J) or unusable (R).

Table 11. Internal Standard Actions for ICP-MS Analysis

Internal Standard Results	Action for Samples
No internal standards	Qualify all results as unusable (R)
< 5 of the required internal standards	Qualify all results as unusable (R)
Target analyte not associated with internal standard	Qualify all analyte results not associated with an internal standard as unusable (R)
% RI < 60% or > 125%, original sample reanalyzed at 2-fold dilution, and % RI of diluted sample analysis is between 60% and 125%	Do not qualify the data
% RI < 60% or > 125%, original sample reanalyzed at 2-fold dilution, and % RI of diluted sample analysis is outside the 60% to 125% limit	Qualify analytes associated with the failed internal standard that are ≥ MDL as estimated (J) and qualify associated non-detects as estimated (UJ)
Original sample not reanalyzed at 2-fold dilution	Use professional judgment Qualify sample results as estimated (J) or unusable ®

XII. DETECTION LIMITS RESULTS

The detection limit assessment is to verify that samples results are within instrument calibration range or linear range (ICP).

Instrument Detection Limits (IDL). Note IDL is not required for Cyanide.

- A. IDL/MDL (or lowest quantitation limit used) results were present and found to be allevels that meet the project objectives? Yes or No
- B. IDL/MDL (or lowest quantitation limit used) were not met for the following elements:
- 2. Reporting Requirements
- A. Were sample results on Form I (or equivalent) reported down to the IDL/MDL or lowest quantitation limit used for all analytes?

 Yes or No
- B. Were sample weights, volumes, and dilutions taken into account when reporting results (positive and nondetects)? Yes or No

If no, the reported results may be inaccurate. Request the laboratory resubmit the corrected data.

- 3. Sediment Sample Percent Solids (% solids):
- A. Were the % solids for any sediment samples < 50% but ≥ 10%? Yes or No If yes, estimate positive results and nondetects (J/UJ) if the % solids is 10-50%. List the affected samples:______
- B. Were the % solids for any sediment samples < 10%? Yes or No If yes, reject all results (R) if the % solid is < 10%. List the affected samples: __N/A_______
- XI. TOTAL/DISSOLVED OR INORGANIC/TOTAL ANALYTES
- A. Were any analyses performed for dissolved as well as total analytes on the same sample(s)?

 Yes or No
- B. Were any analyses performed for inorganic as well as total analytes on the same sample(s)? Yes or **No**

If yes, compare the differences between dissolved (or inorganic) and total analyte concentrations. Compute each difference as a percent of the total analyte only when both of the following conditions are fulfilled:

- (1) The dissolved (or inorganic) concentration is greater than total concentration, and
- (2) greater than or equal to 5xMDL.

		All criteria were metN/A Criteria were not met and/or see below
C.	Is any dissolved (or inorganic) concentration greater that than 20%? Yes or No	n its total concentration by more
D.	Is any dissolved (or inorganic) concentration greater that than 50%? Yes or No	n its total concentration by more
	N: percent difference is greater than 20%, flag (J) both trations as estimated. If the difference is more than 50%, r	
XII.	SAMPLE QUANTITATION	
The sar	mple quantitation evaluation is to verify laboratory quantita	tion results.
	Sample results fall within the linear range for ICP and warameters.	rithin the calibration range for all
	If samples results were beyond the linear range/calibratic performed?	on range of the instrument, were
List the	affected samples/elements/dilution:	
In the s	space below, please show a minimum of one sample calcu	lation per method:
ICP/ICF	P-MS Computer printout	
Hg/Met	als by AA	
Hexava	alent Chromium	
<u>Cyanide</u>	<u>e</u>	
<u>Others</u>		
	samples, the following equation may be necessary to cor actual sample concentrations (mg/Kg):	overt raw data values reported in
Conc. ir	n ug/L x <u>Volume diluted to, mL</u> x <u>1L</u> x <u>1000 q</u> x <u>1</u> Weight digested, g 1000 mL 1 Kg	mg = concentration 1000 mg in wet weight mg/Kg

In addition the sample results are converted to dry weight by using the percent solid calculations:

Wet weight concentration x 100 = final concentration, dry weight (mg/Kg) % solids

OVERALL ASSESSMENT

Action:

- 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the QC criteria previously discussed.
- 2. Write a brief Data Review Narrative to give the user an indication of the analytical limitations of the data. Note any discrepancies between the data and the Sample Delivery Group (SDG) Narrative for Contract Laboratory Program Project Officer (CLP PO) action. If sufficient information on the intended use and required quality of the data is available, the reviewer should include an assessment of the data usability within the given context.
- 3. If any discrepancies are found, the laboratory may be contacted by the Region's designated representative to obtain additional information for resolution. If a discrepancy remains unresolved, the reviewer may determine that qualification of the data is warranted.

Note:			
			54154

EXECUTIVE NARRATIVE

SDG No:

JC33384

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8015C

Number of Samples:

11

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

Eleven (11) samples were analyzed for the low molecular weight alcohols (LMWAs) list following method SW846-8015C. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846 (Final Update III, December 1996)," specifically for Methods 8000/8015C are utilized. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

1. Initial, continuing, and final calibration verifications meets method specific criteria in at least one of the two columns except for the cases described the Data Review Worksheet.

Final calibration verification included in data packages.

Analytes not meeting the calibration performance criteria qualified (J) or (UJ) in affected

samples.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Rafuel defaut

Signature:

Date:

January 12, 2017

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC33384-1

Sample location: BMSMC Building 5 Area

Sampling date: 12/6/2016

Matrix: AQ - Equipment Blank

METHOD: 8015C

	Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
E	thanol	200	ug/l	1.0	•	U	Yes
ls	sobutyl Alcohol	100	ug/l	1.0	•	U	Yes
ŀ	sopropyl Alcohol	100	ug/l	1.0	-	U	Yes
п	-Propyl Alcohol	100	ug/l	1.0	•	U	Yes
n	-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
S	ec-Butyl Alcohol	100	ug/l	1.0	•	U	Yes
١	/lethanol	200	ug/l	1.0	_	U	Yes

Sample ID: JC33384-2

Sample location: BMSMC Building 5 Area

Sampling date: 12/6/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	200	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	2	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	*	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	2	U	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: JC33384-3

Sample location: BMSMC Building 5 Area

Sampling date: 12/6/2016

Matrix: AQ - Field Blank Water

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	200	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	•	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: JC33384-4

Sample location: BMSMC Building 5 Area

Sampling date: 12/7/2016

Matrix: AQ - Equipment Blank

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	200	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	•	U	Yes
Isopropyl Alcohol	100	ug/i	1.0	2	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	2	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: JC33384-5

Sample location: BMSMC Building 5 Area

Sampling date: 12/7/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	200	ug/l	1.0	-	UJ	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	υ	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	•	UJ	Yes
Methanol	200	ug/I	1.0	-	U	Yes

Sample ID: JC33384-6

Sample location: BMSMC Building 5 Area

Sampling date: 12/7/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	200	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0		U	Yes
Isopropyl Alcohol	100	ug/l	1.0		U	Yes
n-Propyl Alcohol	100	ug/l	1.0	0.	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0	-	υ	Yes

Sample ID: JC33384-7

Sample location: BMSMC Building 5 Area

Sampling date: 12/7/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	200	ug/l	1.0	-	UJ	Yes / /
Isobutyl Alcohol	100	ug/i	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	•	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	UJ	Yes / /
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: JC33384-8

Sample location: BMSMC Building 5 Area

Sampling date: 12/7/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	200	ug/l	1.0	-	UJ	Yes
Isobutyl Alcohol	100	ug/l	1.0	•	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	•	UJ	Yes / /
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: JC33384-9

Sample location: BMSMC Building 5 Area

Sampling date: 12/7/2016

Matrix: AQ - Field Blank Water

Analyte Name Ethanol	Result 200	Units ug/l	Dilution Factor 1.0	Lab Flag	Validation UJ	Reportable Yes
				_		
Isobutyl Alcohol	100	ug/i	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	UJ	Yes //
Methanol	200	ug/l	1.0	-	J	Yes

Sample ID: JC33384-6MS

Sample location: BMSMC Building 5 Area

Sampling date: 12/7/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	4910	ug/l	1.0	-	-	Yes
Isobutyl Alcohol	5490	ug/l	1.0	-	-	Yes
Isopropyl Alcohol	5850	ug/l	1.0	•	-	Yes
n-Propyl Alcohol	5390	ug/l	1.0	-	-	Yes
n-Butyl Alcohol	5890	ug/l	1.0	•	-	Yes
sec-Butyl Alcohol	6510	ug/l	1.0	-	-	Yes
Methanol	4260	ug/l	1.0	-	-	Yes

Sample ID: JC33384-6MSD

Sample location: BMSMC Building 5 Area

Sampling date: 12/7/2016

Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	4960	ug/l	1.0	-	-	Yes
Isobutyl Alcohol	5350	ug/l	1.0	-	-	Yes
Isopropyl Alcohol	4450	ug/l	1.0	-	-	Yes
n-Propyl Alcohol	5720	ug/l	1.0	-	-	Yes
n-Butyl Alcohol	6080	ug/l	1.0	-	-	Yes
sec-Butyl Alcohol	5180	ug/l	1.0	-	127	Yes
Methanol	4550	ug/l	1.0		(*)	Yes

	Project Number:JC33384
	Date:12/06-07/2016
	Shipping Date:12/08/2016
	EPA Region: 2
REVIEW OF VOLATILE Of The following guidelines for evaluating volatile organics were document will assist the reviewer in using professional judg serving the needs of the data users. The sample results of guidance documents in the following order of preceder Physical/Chemical Methods SW-846 (Final Update III, December 11). December 12. The QC criteria and data validation actions listed of guidance document, unless otherwise noted. The hardcopied (laboratory name) _Accutest and the quality control and performance data summarized. The Lab. Project/SDG No.:JC33384	recreated to delineate required validation actions. This imment to make more informed decision and in better were assessed according to USEPA data validation nce: "Test Methods for Evaluating Solid Waste, inber 1996)," specifically for Methods 8000/8015C are on the data review worksheets are from the primary data package received has been reviewed ne modified data review for VOCs included:
No. of Samples:11	Sample matrixGroundwater
Trip blank No.:	X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound Identifications
XBlanks	X Compound Quantitation
X Surrogate Recoveries	X Quantitation Limits
X Matrix Spike/Matrix Spike Duplicate	Qualitation Limb
Control Balance Control Control	
Overall Comments:_Low_molecular_weight_alcohols_b	y_SW-846_8015C
Definition of Qualifiers:	
J- Estimated results	
U- Compound not detected	
R- Rejected data	
UJ- Estimated nondetect	
Reviewer: 12, 2017	
DateJanuary_U2,_2011	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
-		
	1	
	<u> </u>	-1
<u> </u>		
	1	
		1
-		-
7-		-

All criteria were met _	_X_	_
Criteria were not met		
and/or see below		

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	рН	ACTION
All samples analyz	zed within the recomr	nended method holding.	All sam	oles properly preserved.
				Hearth
			İ	
			+	
			+	

Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4°C), no air bubbles. Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles. Soil samples- 7 days from sample collection.

Cooler temperature (Criteria: 4 ± 2 °C): 5.2°C

Actions

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R).

If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ)

If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R).

If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

If mass calibration is in error, all associated data are rejected.

	All criteria were metN/A_ Criteria were not met see below
GC/MS TUNING	
The assessment of the tuning results is to determine if the sample instrumentuning QC limits	ntation is within the standard
N/A_ The BFB performance results were reviewed and found to be within t	he specified criteria.
_N/A_BFB tuning was performed for every 12 hours of sample analysis.	
f no, use professional judgment to determine whether the associated data stor rejected.	hould be accepted, qualified
ist the samples affected:	

All criteria were me		
Criteria were not me	et	
and/or see below _	_X	

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	_10/10/16
Dates of continuing calibration:	_12/14/16
Dates of final calibration verification:	_12/14/16
Instrument ID number:	_GCGH
Matrix/Level:Aqueous	s/low

DATE	LAB FILE ID#	CRITERIA OUT RFs, %RSD, <u>%D</u> , r	COMPOUND	SAMPLES AFFECTED
12/14/16	CC5519-10000	-61.2/-20.3	Ethanol	JC33384-5; -7; -8;
		-25.1/-25.3	2-butanol	and -9
	CC5519-5000	-37.3/-27.6	2-butanol	

Note: Initial, continuing, and final calibration verifications meets method specific criteria in at least one of the two columns except for the cases described in this document. Final calibration verification included in data packages. Analytes not meeting the calibration performance criteria qualified (J) or (UJ) in affected samples.

Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be \leq 15 % regardless of method requirements for CCC.

All %Ds must be < 20% regardless of method requirements for CCC.

It should be noted that Region 2 SOP HW-24 does not specify criterion for the curve correlation coefficient (r). A limit for r of \geq 0.995 has therefore been utilized as professional judgment.

Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r < 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

All criteria were met _	_X
Criteria were not met	
and/or see below	-22

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_trip_blank_	_associted_with	_this_data_pac	kage	ed_in_this_data_package
			DF.	

All criteria were met _	X_	
Criteria were not met		
and/or see below		

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene) ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and \le AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is ≥ SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
				-55	
			- 1		
-					

All criteria were met _	_X	
Criteria were not met		
and/or see below		

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery.

Matrix: solid/aqueous

SAMPLE ID		SURROGAT	E COMPOUND		ACTION
	Hexar	nol DBFM	TOL-d8	BFB	
	S1 a	S1 b			
JC33384-1	121	120			
JC33384-2	125	120			
JC33384-3	118	117			
JC33384-4	119	121			
JC33384-5	120	113			
JC33384-6	90	88			
JC33384-7	112	108			
JC33384-8	114	123			
JC33384-9	126	113			
GGH5588-BS	102	102			
GGH5588-MB1	111	112			
GGH5588-MB2	109	117			
JC33384-6MS	94	93			
JC33384-6MSD	106	104			

- (a) Recovery from GC signal #2
- (b) Recovery from GC signal #1

Note: All surrogate recoveries within laboratory control limits.

QC Limits* (Aqueous)LL_to_UL QC Limits* (Solid-Low)	_56_to_145_	to	to	to
LL_to_UL QC Limits* (Solid-Med)		to	to	to
LL_to_UL		to	to	to
1,2-DCA = 1,2-Dichloro DBFM = Dibromofluoro				Toluene-d8 mofluorobenzene

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 80 120 % for aqueous and 70 130 % for solid samples.

Actions:

QUALITY	%R < 10%	%R = 10% - LL	%R > UL
Positive results	J	J	J
Nondetects results	R	UJ	Accept

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%. If any one surrogate in a fraction shows < 10 % recovery.

All criteria were met _X	
Criteria were not met	
and/or see below	

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:JC	33384-6MS/-6MSD_			Matrix/Level:	Groundwater/low	
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION	
MS/MSD%_re	ecoveries_and_RPD_	within_lab	oratory_	control_limits		
					200	
77 m 1970 m 1970				1100		

* QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.

* If QC limits are not available, use limits of 70 – 130 %.

Actions:

Note:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All criteria were met _	_X_	
Criteria were not met		1
and/or see below		

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J). If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD – Unspiked Compounds

It should be noted that Region 2 SOP HW-24 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

Sample ID:			Matrix/Le	vel/Unit:	•
COMPOUND	SAMPLE CONC.	MS CONC.	MSD CONC.	% RSD	ACTION
					1 100
				E STATE OF THE STA	
		199			
		70000		100000000000000000000000000000000000000	
	The second second				
100	1				
To be a second					

Actions:

- * If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).
- * If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

A separate worksheet should be used for each MS/MSD pair.

All criteria were met _	_X_	
Criteria were not met		
and/or see below		

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

	LCS ID	COMPOUND	% R	QC LIMIT	
Recover	ies_within_labor	ratory_control_limits			
					_

Note:

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

		All criteria were met Criteria were not met and/or see below	_N/A
IX.	FIELD/LABORATORY DUPLICATE PRECISION		
	Sample IDs:	Matrix:	

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information. Suggested criteria: RPD \pm 30% for aqueous samples, RPD \pm 50% for solid samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
		n. RPD within labora	th this data package. Matory, generally acceptates criteria control limits.	ble and o	6 recoveries RPD used guidance document

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were met _	_N/A
Criteria were not met	
and/or see below	_

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- * Area of +100% or -50% of the IS area in the associated calibration standard.
- * Retention time (RT) within 30 seconds of the IS area in the associated calibration standard.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABL RANGE	E ACTION	
						75
					15 m	
				Till and the same of the same		
		9				_
	9					- 11
-						

Actions:

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

QUALITY	IS AREA < -25%		IS AREA > + 100%
		TO – 50%	
Positive results	J	J	J
Nondetected results	R	UJ	ACCEPT

2. If a IS retention time varies more than 30 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

All criteria were met _	X_
Criteria were not met	
and/or see below	

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

JC33384-1MS

Methanol

All criteria were met _	Х_	_
Criteria were not met		
and/or see below		

XII.	QUANT	DITATIO	NL	IMITS
/XIII.	QUAL	11//11/		

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION

Percent Solids
List samples which have ≤ 50 % solids

Actions:

If the % solids of a soil sample is 10-50%, estimate positive results (J) and nondetects (UJ)

If the % solids of a soil sample is < 10%, estimate positive results (J) and reject nondetects (R)